
Automatic Inference
of Hyperproperties

Bachelor’s Thesis

Christian Knabenhans

August 23, 2018

Supervisors: Prof. Dr. Peter Müller, Jérôme Dohrau, Marco Eilers

Department of Computer Science, ETH Zurich

Contents

Contents i

1 Introduction 1

2 Preliminaries 3
2.1 Hyperproperties . 3
2.2 Product Program . 4

2.2.1 Translating Statements 4
2.2.2 Modeling the Heap . 6

2.3 Translating Specifications . 6
2.4 Abstract Interpretation . 7

3 Approach 9
3.1 Motivation . 9
3.2 Trace Partitioning . 10
3.3 Abstract Domain . 11

3.3.1 Binary Decision Trees 11
3.3.2 Operators . 12
3.3.3 Splits and Merges . 12

3.4 Storeless Heap Domain . 13
3.4.1 Motivation . 13

3.5 Instantiations . 14
3.6 Specification Inference . 15

4 Implementation 17
4.1 Splits . 17
4.2 Merges . 18
4.3 Property-dependent splits . 21

4.3.1 Parallelism . 21
4.3.2 Explicit Bounds . 21

i

Contents

5 Evaluation 23
5.1 Non-Interference . 24

5.1.1 Postconditions and Loop Invariants 24
5.1.2 Performance . 33

5.2 Comparator Implementations 34
5.3 Miscellaneous Examples . 36

5.3.1 Euclidean Algorithm - Symmetry and Reflexivity . . . 36
5.3.2 Monotonicity of Multiplication 37

5.4 Discussion . 38

6 Conclusion and Future Work 41

A Appendix 43

Bibliography 47

ii

Chapter 1

Introduction

Today, automated reasoning about program behavior is a well-established
discipline in computer science, with a wide array of tools and techniques. In
the most common scenario, the goal is to prove trace properties of programs,
such as termination or functional correctness. However, not all program
properties can be expressed as properties of individual traces. Hyperprop-
erties are properties which relate different executions of the same program,
and include non-interference, determinism, and injectivity, among others.
For example, proving determinism for a program requires showing that
any two executions with identical initial states will produce identical final
states. Non-interference classifies a program’s inputs and outputs as either
low (public) and high (secret). A program is said to fulfill non-interference
if the low outputs are not influenced by the high inputs, i.e., if in several
runs of the program with identical low inputs (but possibly different high
inputs), the resulting low outputs are identical.

Eilers et al. developed a methodology to verify general hyperproperties (and
non-interference in particular) [6], and implemented it in the Viper1 [12]
framework. To achieve this, they build a modular product program, which
simulates several executions of the original program. A hyperproperty can
then be expressed as a trace property of the product program, and verified
using standard verifiers.

However, as is generally the case with deductive verification, Eilers’ method-
ology requires specifications to be added to the program in the form of pre-
and postconditions, and loop invariants. This is cumbersome in general,
and specifications for hyperproperties are especially verbose and difficult to
find.

This thesis aims to develop a framework to automatically infer such specifica-
tions, in order to prove hyperproperties with less or even without program-

1www.bitbucket.org/viperproject/silver

1

www.bitbucket.org/viperproject/silver

1. Introduction

mer input. We develop a static analysis to infer specifications on product
programs, and implement it in the static analyzer Sample2,3, which is part
of the Viper framework.

This report is organized as follows: in Chapter 2, we explain the concepts
used in our methodology, in particular the construction of modular product
programs. We detail our approach in Chapter 3, and discuss our imple-
mentation in Chapter 4. Finally, we evaluate our framework with respect to
performance and precision in Chapter 5, and conclude in Chapter 6.

Throughout this report, we will explain our methodology for general hyper-
properties, using non-interference as an example.

2www.pm.inf.ethz.ch/research/sample.html
3www.bitbucket.org/viperproject/sample

2

www.pm.inf.ethz.ch/research/sample.html
www.bitbucket.org/viperproject/sample

Chapter 2

Preliminaries

2.1 Hyperproperties

As mentioned in Chapter 1, a hyperproperty is a property that relates sev-
eral executions of the same program. A k-safety hyperproperty relates finite
prefixes of k execution traces, for an arbitrary k.

Interesting hyperproperties include:

• Non-Interference (NI): If a program is run twice with the same low
inputs (but possibly different high inputs), its low outputs will be the
same.

• Determinism: If a program is run twice with the same inputs, it will
produce the same outputs in both executions. Determinism is equiva-
lent to NI without high variables.

• Injectivity: If a program is run twice with different inputs, it will
produce different outputs in both executions, i.e., the program imple-
ments an injective mapping from its input space to its output space.

• Symmetry: If a program with two inputs is run twice with swapped
inputs, it will produce the same output in both executions.

• Transitivity: Suppose we have a program with two inputs and one
boolean output. If the program outputs true for inputs a, b and b, c, it
also outputs true for inputs a, c.

SIF, Determinism, Injectivity, and Symmetry are 2-safety hyperproperties
whereas Transitivity is a 3-safety hyperproperty.

3

2. Preliminaries

2.2 Product Program

2.2.1 Translating Statements

In order to infer k-safety hyperproperties on a program, we build a modular
k-product program, as introduced by Eilers et al. [6]. A run of a k-product
program corresponds to k runs of the original program, and we can thus ex-
press a k-safety property of some program as a trace property of its product
program. The product program can then be fed to an off-the-shelf verifier
or static analyzer.

We will now briefly explain how one can build a k-product program from a
program.

The product program multiplies the state space of the original program by
creating k renamed versions of all original variables. The product program
also uses boolean activation variables that store, for each of the k executions,
the condition under which it is active.

In the following, we will usually denote the i-th activation variable as p(i).
We write e(i) for the i-th renamed version of the original expression e, and

∏
◦p
k (s) for the k-product of the statement s parametrized by the activation

variables
◦p ≡ p(1), . . . , p(k). We also let ⊙k

i=1 si denote the sequential compo-
sition of k statements s1; . . . ;sk.

Conditionals

For each if-then-else-statement in the original program, 2k new activation
variables are created (k for each branch). The body of the branches are then
translated, respectively parametrized by the new activation variables. More
formally,

∏
◦p
k (if (c) {s} else {s′}) = ⊙k

i=1 t(i) := p(i) ∧ c(i);
⊙k

i=1 f (i) := p(i) ∧ ¬c(i);

∏
◦
t
k (s) ; ∏

◦
f
k (s′).

◦
t and

◦
f are fresh variables, i.e., they do not occur anywhere else in the

program.

Assignments

For every state-modifying statement (except assignments where the right-
hand side is a method call, which are treated separately) in the original
program, the product modifies the state of all active executions in the prod-
uct program. This is achieved by creating k renamed statements from the

4

2.2. Product Program

original, and wrapping each of them in an i f -statement with its activation
variable as condition. For example, an assignment x := e is translated to
⊙k

i=1 if(p(i)) {x(i) := e(i)}.

Loops

Loops are not duplicated in the product program. Instead, a loop in the pro-
gram is translated to a single loop in the product program, whose condition
is the disjunction of the k renamed versions of the original loop condition,
conjoined with their respective activation variables. This ensures that the
loop body in the product is executed when at least one loop body is exe-
cuted in an active execution. k new activation variables are created for the
body; the i-th activation variable for the body is true iff the body is executed
in the i-th execution. The body of the translated loop is the translated body
of the original loop. More formally,

∏
◦p
k (while(e) {s}) = while((p(1) ∧ e(1)) ∨ . . . ∨ (p(k) ∧ e(k))) {

⊙k
i=1 p(i)1 := p(i) ∧ e(i);

∏
◦p1
k (s)

}.

Procedure Calls

A procedure call in the original program is translated to a single call to
the translated procedure in the product. The translated method takes k
activation variables as arguments, as well as k renamed versions of every
original argument. The activation variables passed as arguments are used
to inform the callee about which executions are active.

The k renamed arguments are evaluated and stored in k temporary vari-
ables (conditionally on their respective activation variables). This ensures
that arguments are only evaluated and passed on to the callee for active exe-
cutions. The result of the translated call is then stored in k other temporary
arguments, which are then copied to the k renamed targets, (conditionally
on their respective activation variables). Again, this ensures that returned
values are only evaluated and assigned to targets for valid executions.

These translated statements are then made conditional on the disjunction
of all activation variables, to ensure that the procedure in the program is
only called if at least one procedure in the original program is called. More
formally,

5

2. Preliminaries

∏
◦p
k (x1, . . . , xm := m(e1, . . . , en)) = if (p(1) ∨ . . . ∨ p(k)) {

⊙k
i=1 if(p(1)) {⊙n

j=1 a(i)j := e(i)j };
◦

t1, . . . ,
◦

tm := m(
◦p, ◦a1, . . . , ◦an);

⊙k
i=1 if(p(1)) {⊙m

j=1 x(i)j := t(i)j }
}.

Here
◦
t1, . . . ,

◦
t m, ◦a1, . . . , ◦an do not occur anywhere else in the program.

2.2.2 Modeling the Heap

There are several ways to translate the heap in the product: we could dupli-
cate all reference variables, but keep the original fields, or we could dupli-
cate both reference variables and fields. For this thesis, we opt for the latter;
this enables us to be more fine-grained. For example, we can express that r
is the same in two executions (namely as r(i) = r(j)), even if the field access
r. f is different in these executions (i.e., r(i). f (i) ̸= r(j). f (j)). If fields are not
duplicated, r(i) = r(j) implies r(i). f = r(j). f , i.e, r. f can only have the same
value in different executions if r points to the same heap location in these
executions. In particular, it is not possible to specify the NI hyperproperty
low(r) without also specifying low(r. f) using this encoding of the heap.

When duplicating the fields, an expression r. f in the original program be-
comes r(i). f (i) for the i-th execution in the product program.

To translate an allocation r := new(f1, . . . , fn) for a reference r and fields
f1, . . . , fn, a (fresh) temporary variable tmp is created, allocated, and each
of the k renamed versions of r are assigned tmp, conditionally on their re-
spective activation variables. This construction ensures that newly allocated
references are low by default, since the k references in the active executions
of the product all point to tmp. Formally,

∏
◦p
k (r := new(f1, . . . , fn)) = tmp :=new(

◦
f 1, . . . ,

◦
fn);

⊙k
i=1 r(i) := tmp.

2.3 Translating Specifications

To be able to reason about k-safety hyperproperties, we need to translate
specifications from an original program to its product program, and to trans-
late specifications inferred on the product program back to the original pro-
gram.

We distinguish two types of specifications: unary specifications, which de-
scribe properties that should hold for each single execution (e.g. a precondi-

6

2.4. Abstract Interpretation

tion that guarantees the termination of the program), and k-relational specifi-
cations, which describe the relation between the states of k executions.

A unary specification in the product program should hold if the execu-
tion is active. Therefore, the transformation of a unary specification P is∧k

i=1(p(i) ⇒ P(i)) in a k-product program with activation variables p(1), . . . , p(k).

A k-relational specification, on the other hand, only makes sense when all
k executions are active. Thus, the transformation of a k-relational specifi-
cation P̂ is

∧
i=1(p(i)) ⇒ P̂ in a product program with activation variables

p(1), . . . , p(k).

We introduce a keyword rel; rel(e, i) in a program is translated to e(i) in its k-
product program. For the special case k = 2, we also introduce the keyword
low, and translate low(e) to e(1) = e(2) in the product. low expressions are
especially useful for specifying NI properties.

These two keywords allow us to specify k-relational properties we want to
verify for a program, or in our case, to specify inferred k-relational properties
as pre- and postconditions, as well as loop invariants of an original program.

2.4 Abstract Interpretation

Abstract Interpretation1 (AI), introduced by Cousot and Cousot [2], is a math-
ematical framework for the (sound) approximation of the semantics of pro-
grams. A semantics is a mathematical characterization of all possible be-
haviors of a program. AI can be viewed as a partial execution which gains
information about the semantics of a program without performing all the
concrete calculations.

The most precise semantics is the concrete semantics, which consists of a set
of traces a program may produce. A trace is a sequence of consecutive states,
which contain information about the current program point, local variables,
and heap. The goal of AI is to derive a (computable) semantic interpretation
for each program point. Generally, AI trades off the precision of the analysis
against its tractability.

Let (C,≤) and (A,⊑) be two partially ordered sets, let α : C → A be the
abstraction function, and let γ : A → C be the concretization function. C is
the concrete set and A is the abstract set. For ξ ∈ C and x ∈ A, α(ξ) is the
abstraction of ξ, and γ(x) is the concretization of x.

⊥ and ⊤ are the least and greatest elements in A, i.e., ⊥ ⊑ x ⊑ ⊤ for all
x ∈ A. For x, y ∈ A, ⊔ is the least upper bound operator, with x ⊑ x ⊔ y and
y ⊑ x ⊔ y, and ⊓ is the greatest lower bound operator, with x ⊓ y ⊑ x and

1www.di.ens.fr/~cousot/AI/IntroAbsInt.html

7

www.di.ens.fr/~cousot/AI/IntroAbsInt.html

2. Preliminaries

x ⊓ y ⊑ y. We assume that A is a complete lattice, i.e., that ⊥ and ⊤ exist,
and that ⊔ and ⊓ are defined for all elements of A.

The concrete semantics can be expressed as a fixed-point of a monotonic
function f : C → C. A valid abstraction F : A → A of f is a function such
that f (γ(x)) ≤ γ(F(x)) for all x ∈ A. Any x satisfying F(x) ⊑ x is then an
abstraction of the least fixed point of f . The goal of AI is to compute such
an x.

Such an abstraction of the least fixed-point can be computed as the station-
ary limit of the sequence xn defined by x0 = ⊥, xn+1 = F(xn). In some cases,
particularly when A is of infinite height, this sequence might not converge,
but instead grow indefinitely. For these cases, x can be obtained through
the widening operator ▽. ▽ should provide an upper bound of its argu-
ments (i.e., x, y ⊑ x ▽ y), and for any sequence {yi}, the sequence defined as
x0 = ⊥, xn+1 = xn ▽ yn should converge to a stationary point.

Thus, AI abstracts sets of traces (elements of C) as abstract elements of A.

We now describe some well-known (numerical) abstract domains.

• Sign: An element of the sign domain is a mapping from local variables
to their sign. As such, the sign domain only tracks information about
individual variables.

• Octagon: [11] An element of the sign domain is a constraint of the
form ±u ± v ≤ c, where u and v are program variables and c is a con-
stant. The octagon domain is thus a relational domain, i.e., it can capture
information about the relationship between variables. However, only
a subset of all relationships between variables can be captured. For ex-
ample, the constraint u = v±w cannot be expressed, and an imprecise
over-approximation will be used instead.

• Polyhedra: [3] An element of the polyhedra domain stores constraints
of the form a1v1 + . . . + anvn ≤ c for constants a1, . . . , an, c and vari-
ables v1, . . . , vn. Therefore, the polyhedra domain can express linear
relations between an arbitrary number of variables, and is a relational
domain.

It is possible to combine two different abstract domains to a single one using
a reduced product construction [4]. The idea behind a reduced product is to
communicate the information from one domain to the other domain, and
vice-versa, in order to obtain a more precise result than when using each do-
main in isolation. One particularly useful reduced product combines a heap
domain, which abstracts information about the heap, with a numerical do-
main, which abstracts information about numerical properties of variables
and fields.

8

Chapter 3

Approach

3.1 Motivation

As a motivating example, consider the simple Viper method m and its 2-
product in Figure 3.1. m implements the ramp function, which returns 1 if its
input is positive, and 0 otherwise. Our goal is to infer the NI postcondition
low(x) ⇒ low(res) on m, which specifies that its output is low if its input is
low.

1 method m(x: Int)

2 returns (res: Int)

3 {

4 if (x > 0) { res := 1 }

5 else { res := 0 }

6 }

1 method m(p_1: Int , p_2: Int ,

2 x_1: Int , x_2: Int)

3 returns (res_1: Int ,

4 res_2: Int)

5 {

6 var pt_1: Int

7 var pt_2: Int

8 var pf_1: Int

9 var pf_2: Int

10 pt_1 := p_1 && (x_1 > 0)

11 pt_2 := p_2 && (x_2 > 0)

12 pf_1 := p_1 && !(x_1 > 0)

13 pf_2 := p_2 && !(x_2 > 0)

14 /* s */

15 if (pt_1) { res_1 := 1 /* s’ */}

16 /* s’’ */

17 if (pt_2) { res_2 := 1 }

18 if (pf_1) { res_1 := 0 }

19 if (pf_2) { res_2 := 0 }

20 if (p_1) { ret_1 := 2 }

21 if (p_2) { ret_2 := 2 }

22 }

Figure 3.1: A simple Viper method (left), and its 2-product (right).

9

3. Approach

As described in Section 2.3, we build a product program, on which we infer
the postcondition (p(1) ∧ p(2)) ⇒ x(1) = x(2) ⇒ res(1) = res(2). We then trans-
late this inferred postcondition back to the original program, and obtain the
desired postcondition.

We want to use AI to infer the postconditions of the product. Suppose we
run a static analysis using the polyhedra domain on the product method.
Let s, s′ and s′′ denote the abstract states before the if-statement in line 15,
at the end of the body, and after the if-statement, respectively. s is ⊤: no
information is known about any variable. The abstract state s′ contains the
constraint res(1) = 1. However, this information is lost in s′′ = s ⊔ s′ =
⊤⊔ s′ = ⊤. This situation is repeated in the conditionals of lines 17–21, and
the abstract state at the end of the method will not contain any information
about the return variables.

This loss in precision stems from the structure of the product program itself;
by construction of the product, the two branches of a conditional are ripped
apart, and the control flow is made dependent on the activation variables.
This “implicit” control flow is not understood by standard static analyses,
which leads to precision losses, as can be seen in the example above. Ad-
ditionally, a product combines the control flows of k different executions,
which poses an additional challenge to the analysis. To gain some precision,
we need to somehow “restore” the original control flows, and make them
explicit for the static analysis. We do this using trace partitioning.

3.2 Trace Partitioning

Usually, a static analysis approximate sets of program traces. Trace parti-
tioning [10] allows one to get a more precise abstraction by performing the
abstraction over a partition of the set of traces instead of the set itself.

In our case, we want to partition the set of traces on whether the i-th ex-
ecution is active (for each program point). A natural way to achieve this
partition is to distinguish traces in which the i-th activation variable is true
from those in which it is false.

For example, in the product method from Figure 3.1, we would split the
set of traces into 24 = 16 partitions, based on whether pt 1, pt 2, pf 1,
and pf 2 are true or false. Abstracting each of these partitions separately,
our simple analysis from before knows, at the end of the method, that the
return variables res 1 and res 2 are equal in the traces where only pt 1 and
pt 2, or only pf 1 and pf 2 are true. For all other traces, the analysis either
knows that the return variables are not equal, or knows nothing about the
relationship between them.

10

3.3. Abstract Domain

These partitions evidently help the analysis to gain some precision, but we
are still unable to infer NI specifications from the abstract states (e.g., we
only know that the return variables are equal if only pt 1 and pt 2 are true).

To bridge the gap to NI specifications inference, we introduce an additional
partition of the traces, namely on whether x is low in the original program.
An input x is low in the original program if x(1) = x(2) in the product. With
this new partitioning expression, we obtain 25 = 32 partitions of the set
of traces. Some of these partitions are empty, e.g., there is no valid trace
in which pt 1 and pf 1 are both true, and there is no valid trace in which
x(1) = x(2), pt 1, and pf 2 are true.

Finally, since we only want to infer specifications on the product that can
be transformed to k-safety hyperproperties of the original program, we are
only interested in properties of the form (

∧k
i=1 p(i)) ⇒ P. Therefore, we can

assume that p(1), . . . , p(k) are true to further increase precision (e.g., there
is no valid trace where p(1), p(2), x(1) = x(2) and pt 1 are true, but pt 2 is
false).

Using the partitions described above, the simple analysis used for m in Fig-
ure 3.1 can infer that the return variables are equal in all traces in which
x(1) = x(2), under the assumption that p(1) and p(2) are true, i.e., that
p(1) ∧ p(2) ⇒ x(1) = x(2) ⇒ res(1) = res(2).

We describe how we inform our abstract domain about the partitions in
Chapter 4.

3.3 Abstract Domain

3.3.1 Binary Decision Trees

To implement trace partitioning, we use a Binary Decision Tree (BDT) ab-
stract domain [1]. As its name suggests, a BDT domain partitions traces
using a binary tree, where nodes store boolean expressions. The left and
right subtrees T and F of a node J c : T, F K with condition c abstract sets of
concrete states, reachable via traces for which c and ¬c hold, respectively.
The domain takes another abstract domain as parameter (the leaf abstract
domain L), and the leaves (written as L · M) of the tree store constraints as
elements of L.

For some leaf abstract domain (L,⊥L,⊤L,⊑L,⊔L,⊓L, ▽ L), we denote the
BDT domain parametrized by L as TL. The elements BDT of TL are defined
by the following syntax:

BDT ::= ⊥ | ⊤ | Inner
Inner ::= L S M | J B : Inner, Inner K

11

3. Approach

Here S ∈ L is an element of the leaf abstract domain, and B is a boolean
expression.

3.3.2 Operators

The abstract domain operators ⊑, ⊔, ⊓, and ▽ are defined as follows:

Inclusion

a ⊑ a′ =


s ⊑L s′ if a = L s M and a′ = L s′ M
T ⊑ T′ ∧ F ⊑ F′ if a = J c : T, F K and a′ = J c : T′, F′ K
f alse otherwise

Least Upper Bound

a⊔B a′ =


L (s ⊔L s′) ⊓L αL (

∧
b∈B b) M if a = L s M and a′ = L s′ M

J c : T ⊔B∪{c} T′, F ⊔B∪{¬c} F′ K if a = J c : T, F K and a′ = J c : T′, F′ K
⊤ otherwise

Here ⊔ ≡ ⊔{}, and αL is a function mapping boolean expressions to their
abstraction in the leaf domain L. The bound B is necessary to ensure that
c (respectively ¬c) still holds in the left (respectively right) child of a node
with condition c in the resulting BDT.

Greatest Lower Bound

a ⊓ a′ =


L s ⊓L s′ M if a = L s M and a′ = L s′ M
J c : T ⊓ T′, F ⊓ F′ K if a = J c : T, F K and a′ = J c : T′, F′ K
⊥ otherwise

Widening

The widening operator ▽ is defined similarly to the least upper bound oper-
ator.

3.3.3 Splits and Merges

We also introduce two new operators: split and merge. A formal definition
is shown in Figure 3.2.

split(T, c) replaces every leaf in T by a node with condition c, such that c
and ¬c hold in its left and right children, respectively. In other words, split
adds a new partition (on c) of the traces.

12

3.4. Storeless Heap Domain

merge(T, c) replaces every node with condition c in T by the least upper
bound of its children, i.e., it returns a tree where the partition on c has been
forgotten.

split(L s M, c) = J c : s ⊓L αL(c), s ⊓L αL(¬c) K

split(J c : T, F K, c′) =

{
J c : T, F K if c = c′

J c : split(T, c′), split(F, c′) K otherwise

merge(L s M, c) = L s M

merge(J c : T, F K, c′) =

{
T ⊔ F if c = c′

J c : merge(T, c′), merge(F, c′) K otherwise

Figure 3.2: Definition of the split and merge operators on the BDT domain.

3.4 Storeless Heap Domain

3.4.1 Motivation

In general, we wish to infer hyperproperty specifications for heap-manipulating
programs. For example, we may want to infer the specification low(r. f) for
some reference r with field f . To achieve this, we need to track information
about the heap, in addition to numerical constraints. For heap-manipulating
programs, the leaf domain of our BDT domain is therefore the reduced prod-
uct of a heap abstract domain with a numerical domain.

An element of a simple heap abstract domain stores two mappings h and
s. h maps a reference variable to a set of abstract objects, and s maps an
abstract object and a field to a set of abstract objects. An abstract object rep-
resents a fraction of the entire heap (i.e., multiple concrete heap locations):
for example, one could define an abstract object for each allocation site (i.e.,
for each program point where an allocation occurs).

A reference variable r can then point to any abstract object in h(r), and a
field access r. f can point to any abstract object in

⋃
O∈h(r) s(O, f).

Unfortunately, such a simple heap domain suffers from imprecisions. Sup-
pose a program contains three variables p, q, and r, and suppose there are
three abstract objects O1, O2, and O3. For the sake of simplicity, we assume
that each abstract object only represents a single variable, i.e., if two refer-
ences point to the same abstract object, they are equal.

Consider the situation shown in Figure 3.3. In this abstract state of a simple
heap domain, h(p) = h(q) = {O1}, h(r) = {O2}, and s(O1, f) = {O3}.
After executing q. f := r, s(O1, f) is weakly updated to {O2, O3}, since p. f
could still point to O3. If the statement r := q is now executed, h(r) is

13

3. Approach

p

q

r

O1

O2

O3
f

p

q

r

O1

O2

O3
f

f

p

q

r

O1

O2

O3
f

f

p 7→ {O1}
q 7→ {O1}
r 7→ {O2}

p. f 7→ {O3}
q. f 7→ {O3}

p 7→ {O1}
q 7→ {O1}
r 7→ {O2}

p. f 7→ {O3}
q. f 7→ {O2}

p 7→ {O1}
q 7→ {O1}
r 7→ {O1}

p. f 7→ {O3}
q. f 7→ {O2}
r. f 7→ {O2}

(a) (b) (c)

q. f := r r := q

Figure 3.3: Points-to graphs for a simple heap domain (top) and points-to information for a
storeless heap domain (bottom). For s1 ≡ q. f := r, s2 ≡ r := q, the abstract state is shown (a)
before s1, (b) after s1 and before s2, (c) after s1 and s2. In a points-to graph, there is an edge
from r to O iff O ∈ h(r), and there is an f -edge from O to O′ iff O′ ∈ s(O, f).

updated to {O1}. In the resulting abstract state, we cannot say with certainty
that q. f = r. f , because according to the abstraction, it could be that q. f is
pointing to O2 and r. f to O3.

Since we want to be able to express equalities between field accesses, a
simple heap domain is not suitable for our analysis. To alleviate this loss
in precision, we use a storeless heap domain [5]. An element of a storeless
heap domain is a mapping m from access paths (i.e., expressions of the form
o. f1 · · · . fn for a reference o and fields f1, . . . , fn) to sets of abstract objects.

The abstract state for the situation we described above is shown in Figure 3.3,
on the right. After the assignment q. f := r, m(q. f) is (strongly) updated to
O2, and after q := p, m(q) is updated to O1. After these two statements have
been executed, q. f and r. f both point to only one abstract object O2, and we
know that q. f = r. f .

We implemented such a storeless heap domain in Sample, and used it to
infer hyperproperties for heap-manipulating programs.

3.5 Instantiations

As we showed in Section 3.2, we use trace partitioning to restore the orig-
inal control flows from the product program. We also partition the traces

14

3.6. Specification Inference

w.r.t. interesting properties of the inputs.

For example, to infer NI specifications for a method with parameters a1, . . . , an,
we partition the traces on whether low(a1), . . . , low(an) holds. This is equiv-
alent to running the analysis 2n times, and assuming in each run that all
variables in a subset of the arguments are low. We can then infer specifica-
tions of the form low(ai) ⇒ . . . ⇒ low(aj) ⇒ low(e) for some expression
e.

Property Partitioning Expressions Example Hyperproperty
SIF

Determinism a(1) = a(2), . . . , z(1) = z(2) low(⃗a) ⇒ low(res)
a⃗ = a⃗′ ⇒ m(⃗a) = m(⃗a′)

Monotonicity a(1) ⋆ a(2) for ⋆ ∈ {≤,=,≥, . . .} a ⋆ a′ ⇒ m(a) ⋆ m(a′)
Injectivity a⃗(1) ̸= a⃗(2) a⃗ ̸= a⃗′ ⇒ m(⃗a) ̸= m(⃗a′)
Symmetry

Asymmetry
Total Relation

a(1) = b(2) ∧ a(2) = b(1)
R(a, b) ⇔ R(b, a)

R(a, b) ⇒ ¬R(b, a)
R(a, b) ∨ R(b, a)

Anti-symmetry a(1) = b(2) ∧ a(2) = b(1) ∧ a(1) ̸= b(1) a ̸= b ⇒ ¬(R(a, b) ∧ R(b, a))
Transitivity a(1) = a(3) ∧ b(1) = a(2) ∧ b(2) = b(3) (R(a, b) ∧ R(b, c)) ⇒ R(a, c)

Table 3.1: An overview of hyperproperty specifications and the partitioning expressions used to
infer them.

A few examples of hyperproperty specifications and initial partitioning ex-
pressions are given in Table 3.1. m is a method with arguments a⃗ ≡ a, . . . , z
and return value res, and R is a method with arguments a and b, which
returns a boolean.

3.6 Specification Inference

We will now describe how specifications can be obtained from a BDT. To this
end, we define a function CL,R

, parametrized by sets of variables L and R,
which maps a BDT to a set of boolean constraints. We construct CL,R

such
that all expressions in the set of constraints are of the form l1 ⇒ . . . ⇒ ln ⇒ r,
where li and r are expressions which only contain variables from L and R,
respectively. This constraint is equivalent to (l1 ∧ . . . ∧ ln) ⇒ r. We assume
we are given a function CV

L which maps elements of the leaf domain L to
sets of constraints which only contain variables from V . A formal definition
of CL,R

is given in figure 3.4.

CL,R
is parametrized by two sets of variables in order to only keep specifica-

tions that can be translated back to the original program. In particular, these
constraints should not contain activation variables (except those passed as
arguments to the current method), since they are an artifact of the product
construction and do not occur in the original program.

15

3. Approach

CL,R
(⊤) = {}

CL,R
(⊥) = { f alse}

CL,R
(L s M) = CR

L(s)

CL,R
(J c : T, F K) =


{c ⇒ γ | γ ∈ CL,R

(T)}
∪ {¬c ⇒ γ | γ ∈ CL,R

(F)}
if c only contains variables from L

CL,R
(T ⊔ F) otherwise

Figure 3.4: Definition of the constraint inference function CL,R
.

For example, if we want to infer postconditions, we will choose L as the
set of arguments of the product method, and R as the set of its return
variables. This ensures that only constraints that can be translated to k-
relational specifications are inferred.

Using CL,R
, we obtain a set of unary specifications of the k-product program,

which we can then translate to k-safety properties of the original program by
inverting the transformation described in section 2.3. Thanks to the structure
of our inferred specifications, this translation can be done easily.

16

Chapter 4

Implementation

4.1 Splits

As we described in Chapter 3, we use trace partitioning to increase the pre-
cision of our abstract domain.

Obviously, a partition on an activation variable does not provide additional
precision for the program points before the first occurrence of said variable.

Taking advantage of the well-defined structure of product programs, we can
statically determine at which program point and on which condition we
want to partition traces. To this end, we introduce a new Viper keyword
split, which takes three boolean expressions as arguments. A statement
split(c, t, f) informs the static analysis that it should partition traces on
whether c is true or false, and that it can assume that t and f hold in the
traces where c is true and false, respectively.

We instrument the product program by inserting splits, in order to inform
the abstract BDT domain at which point and on which condition it should
partition traces. We always insert splits after activation variables have been
declared and initialized: for each assignment to a new activation variable
p new := p && c, we insert a statement split(p new, p && c, !(p && c)).

We use “helper” conditions t and f because the simple leaf abstract domains
that we use (e.g., octagon or polyhedra domains) are not precise enough to
represent constraints of the form p′ = p ∧ c. To ensure that we can still use
information about p and c in the subtrees of the node with condition p′, we
communicate this information explicitly. This can be done, since p′ is only
assigned to once in the entire program (by construction of the product).

As an example, Figure 4.1 shows the product method from Figure 3.1 ex-
tended with split statements.

17

4. Implementation

1 method m(p_1: Int , p_2: Int , x_1: Int , x_2: Int)

2 returns (res_1: Int , res_2: Int)

3 {

4 var pt_1: Int

5 var pt_2: Int

6 var pf_1: Int

7 var pf_2: Int

8 pt_1 := p_1 && x_1 > 0

9 pt_2 := p_2 && x_2 > 0

10 pf_1 := p_1 && !(x_1 > 0)

11 pf_2 := p_2 && !(x_2 > 0)

12 split(pt_1 , p_1 && x_1 > 0, !(p_1 && x_1 > 0))

13 split(pt_2 , p_2 && x_2 > 0, !(p_2 && x_2 > 0))

14 split(pf_1 , p_1 && !(x_1 > 0), !(p_1 && !(x_1 > 0)))

15 split(pf_2 , p_1 && !(x_1 > 0), !(p_1 && !(x_1 > 0)))

16 if (pt_1) { res_1 := 1 }

17 if (pt_2) { res_2 := 1 }

18 if (pf_1) { res_1 := 0 }

19 if (pf_2) { res_2 := 0 }

20 }

Figure 4.1: The extended 2-product of the method m from fig. 3.1.

4.2 Merges

When we split on an activation variable p, we gain some precision in the
abstract states for the program points after the split. In some cases, this gain
in precision is not relevant for the properties we wish to infer, in particular
for program points after the last occurrence of p. For such cases, it is useful
to “forget” a partition, in order to keep the set of partitions (and therefore
the size of the abstract state) reasonably small.

For this purpose, we introduce a second Viper keyword merge, which takes
a single boolean expression as argument. A merge(c) statement informs the
analysis that the partition of the traces w.r.t. the boolean condition c can be
forgotten. Since the abstract states’ sizes and the information they contain
are not known before the static analysis is actually run, we do not know an
optimal placement of merge statements beforehand. We can, however, use
some heuristics.

We distinguish four merge strategies (referred to as M0–M3):

M0: One possible strategy is to never merge anywhere. This guarantees
that no precision is lost, at the expense of efficiency.

However, due to the potentially exponential increase of the number of
partitions, this strategy is rarely of practical interest.

For the three following strategies, at the end of a loop body, we merge all the
unmerged splits in the body (which include the splits on the new activation

18

4.2. Merges

variables for the body). We do this because we make the assumption that
the splits inside the body are only useful for the body’s statements; the acti-
vation variables for the body are not used later in the program. As will be
shown in Chapter 5, we have found experimentally that this assumption typ-
ically holds. This assumption enables us to forget about at least k partitions
after every loop, which helps to speed up our analysis.

M1: This strategy always merges on activation variables after their last oc-
currence in the program. This approach leads to precision losses, how-
ever in practice it is sufficient to infer specifications for many examples.
This strategy essentially restores the branching factor in the original
program.

M2: this strategy generates fewer unmerged splits than M3 and is more
precise than M1. For each if-statement in the original program, the
product contains 2k assignments to new activation variables, followed
by 2k splits on these activation variables. We let C denote the set
of these splits. After the splits come the 2k (or k, if there is no else-
branch in the original program) translated versions of the bodies of the
original if-statement, parametrized by the new activation variables.

After these translated bodies, we compute the set U of all unmerged
splits up to this point (without the activation variables of the method),
and the set R of all the remaining splits after this point (again, without
the current method’s activation variables). Writing VS for the set of
all variables occurring in the arguments of the splits in S (without the
method’s activation variables), we insert merges using the following
rules:

– If VC ∩VR ̸= {}, i.e., if the current splits have variables in common
with future splits, we do not insert a merge command.

– If VC ∩ VR = {}, i.e., if the current splits have no common vari-
ables with any future splits, we insert 2k merges corresponding
to the splits in C. If VC and VR do not intersect, it is very prob-
able that the partitions in C will not be useful for the remaining
program points, and can thus be forgotten.

Additionally, for each unmerged u = split(c, t, f) in U, we
insert a corresponding merge(c) if V{u} ∩ VR = {}, i.e., if u only
has common variables with the current splits in C. V{u} ∩VR = {}
implies that u was not merged before because it was thought to
be useful for the splits in C. Since if VC ∩ VR = {} the splits in C
have just been merged, u can be merged as well.

Using this approach, we keep all partitions around up until the point at
which we think they will not yield any precision in the future anymore,
where we then forget about them.

19

4. Implementation

However, this strategy fails when there are hidden data dependencies
between variables. For example, consider the following statements:

y := 0; if (x > 0) { y := 1 }; if (y == 0) {. . .}

In the body of the second if-statement, the value of y depends on the
value of x. However, since x does not appear in the second if-condition,
we will merge on the activation variables of the first if-statement be-
fore splitting on those of the second, and therefore potentially lose
precision.

It is possible to palliate this precision loss by running a simple data
flow analysis on the original product to detect dependencies between
variables, and using its results to decide where to insert merges. Nev-
ertheless, we did not implement such a pre-analysis in our framework.

M3: Our last strategy is to only merge at the end of a loop body, as de-
scribed above, and nowhere else. This guarantees that precision is
only lost at the end of loop bodies.

For each of the three strategies M1, M2, and M3, we now give bounds for
the number of open splits in a given sequence of statements.

For a given program point, we decompose the nesting level N as N = I + L,
where I and L are the number of nested if-then-else-statements and loops at
this program point, respectively. We let P denote the total number of previ-
ous if-then-else-statements in the program before this point. This includes
the conditionals already counted by I.

Using the M1 strategy, only the splits on the activation variables of the I
nested ifs and L nested loops are still unmerged. There are 2k and k activa-
tion variables for each if-then-else and loop, respectively. Therefore, there
are exactly (2k)IkL open splits at the program point.

The splits that are still open when using the M1 strategy are also open when
using the M3 strategy. However, all the splits for previous if-then-else state-
ments are still unmerged. Splits for previous loops and inside their bodies
are merged. Thus, there are exactly (2k)IkL(2k)(P−I) = (2k)PkL open splits
at the program point when using M3.

Since the M2 strategy depends on the program, we cannot give an exact
bound for the number of unmerged splits at the program point. However,
in the best case, M2 is equivalent to M1, and in the worst case, it is equivalent
to M3. Therefore, there are between (2k)IkL and (2k)PkL unmerged splits at
the current program point.

These bounds only include the splits on activation variables, which can be
merged. To obtain the number of total open splits, one has add the number
of initial splits on inputs.

20

4.3. Property-dependent splits

The total number of splits is the height of the BDT in the abstract state; for
S open splits at some program point, the corresponding BDT has 2S leaves.
Fortunately, a sizable portion of these leaves are ⊥L. For example, an if-
then-else-statement in the original product generates 2k splits on activation
variables t1, . . . , tk, f1, . . . , fk.

For each pair of split ti, fi however, there is no valid trace where ti and fi
are both true, independently of any assumption on inputs. Thus, these two
splits only multiply the number of leaves by 3, and not by 4. After the 2k
splits, the number of non-bottom leaves in the BDT as been multiplied by
at most 3k. When assumptions are made on inputs and input activation
variables, this factor decreases further.

4.3 Property-dependent splits

We also use splits to express assumptions we make. For an assumption a,
we insert a split(a, a, false) at the beginning of the method body. For
example, as we are only interested in inferring k-relational specifications of
the original program, we always make the assumption p(1) ∧ . . .∧ p(k). These
assumptions are actually program invariants that we assume: since they are
located at the root of the BDT, they can be used for the entire subtree, for
the entire duration of the analysis.

4.3.1 Parallelism

Taking advantage of the tree structure of our abstract states, we parallelize
the operators ⊔, ⊓ and ▽ in our implementation. For this purpose, we use
two thresholds Tnode and Tchild.

For any node J c : T, F K, if the number of non-bottom leaves is above Tnode,
and if the numbers of non-bottom leaves of T and F are above Tchild, we com-
pute the results from T and F in two different threads, taken from a global
thread-pool. Otherwise, we compute them sequentially. These two threads
can, if the number of leaves is sufficiently high, delegate their computation
again for the subtrees.

Tchild ensures that we delegate work only if the tree is more or less balanced,
i.e., if approximately as much effort is needed to compute the result for T
and F. Typically, we used Tnode = 8 or 16, and Tchild = 1

3 Tnode.

4.3.2 Explicit Bounds

When splitting using split(c, t, f), t and f are assumed in the left and right
subtrees, but not kept any longer. To gain some precision, we keep the
expressions t and f stored at the nodes until they are invalidated, i.e., until

21

4. Implementation

an identifier in t or f is assigned to. By storing these helper assumptions, we
can conjoin t and f with the node condition c, and assume it in the node’s
children before each operation, thereby gaining some precision.

This is useful if t or f are constraints which cannot be represented in the leaf
abstract domain. For example, a constraint x ̸= 0 cannot be represented in
an abstract domain without disjunctions (which is the case for the octagon
or polyhedra domains, for example).

Supposing we have a method parameter x, after a split(q, p && x == 0,

p && !(x == 0)), we can keep the constraints p, x = 0 and p, x ̸= 0 stored
for the left and right subtree of the newly created node, respectively. Since p
cannot be assigned again (by construction of the product), and since x cannot
be assigned to (because of the syntax of Viper), x ̸= 0 can be assumed for
the right subtree for the entire analysis.

22

Chapter 5

Evaluation

We tested and evaluated our framework on examples collected from the lit-
erature, or that we created ourselves. The programs we wrote showcase
important aspects of our approach. We chose programs from the literature
on which the inference of hyperproperties presents a challenge; for example,
programs containing loops, manipulating the heap, or on which standard
approaches of hyperproperty inference are too imprecise to yield useful re-
sults.

For each example, we present the code, the inferred specifications (postcon-
ditions and loop invariants) for different leaf domains and for each of the
merge placement strategies M1, M2, and M3 defined in Section 4.2. We also
show the running times for each combination of domain and merge strategy.

In the following, Oct and Poly denote the octagon and polyhedra abstract
domains, and H×Oct and H×Poly denote the reduced product of the store-
less heap domain with the octagon and polyhedra domains, respectively.
For Oct and H×Oct, we use the implementation of the octagon domain
present in Sample, which is written in Scala. For Poly and H×Poly, we
use the implementation of the polyhedra domain provided by the Apron
library [8].

All running times presented in this chapter were measured on a Microsoft
Surface Pro 3 (Intel i5 dualcore, 8GB of RAM) running Ubuntu 16.04, and
averaged over 10 runs. Since our framework is written in Scala (which runs
on the Java Virtual Machine), we ran the analysis 10 times before our mea-
suring runs, to allow the JVM to gather profiling information and begin JIT
compilation.

The rest of this chapter is organized as follows: in Section 5.1, we evaluate
the inference of NI specifications on a corpus of examples. In Section 5.2, we
evaluate the inference of Symmetry-like hyperproperties, and in Section 5.3,

23

5. Evaluation

we infer Symmetry, Reflexivity and Monotonicity hyperproperties. Finally,
we discuss the results of our evaluation in Section 5.4.

5.1 Non-Interference

The examples in this section are analyzed in order to infer NI specifications.
The code and inferred specifications are shown for each example separately,
and the timings for all the examples are shown together at the end of the
section.

5.1.1 Postconditions and Loop Invariants

BA1

An existing approach to infer NI specifications is taint analysis. A taint anal-
ysis keeps track of variables which have been “tainted” by high inputs. For
example, a variable becomes tainted if it is assigned an expression contain-
ing a high variable. If a return variable is untainted at the end of the analysis,
it is considered low. Taint analyses do not consider the semantic context of
the program, which leads to precision losses. For example, consider the
following program, where we suppose h is high and l is low.

1 method f(h: Int , l: Int) returns (r: Int)

2 {

3 r := h + l

4 r := r - h

5 }

Our goal is to infer the NI postcondition low(l) ⇒ low(r). A simple taint
analysis considers r as tainted by h at lines 3 and 4, and cannot infer that r
is low at the end of the program.

However, our framework is able to infer the desired postcondition. The
results of our framework are shown below; for each abstract domain, we
show the inferred specification, and we mark the strategies for which it was
inferred with a cross.

Domain Postconditions M1 M2 M3
Oct

Poly low(l) ==> low(r) × × ×
To be able to infer the desired postcondition, the leaf abstract domain must
be able to precisely abstract the constraints r(1) = h(1) + l(1) and r(2) =
h(2)+ l(2). This is achieved in the polyhedra domain, but the octagon domain
is too imprecise.

When run on this example, a run of a simple static analysis (i.e., without a
BDT domain) can infer that r = h + l − h = l at the end of the method, from

24

5.1. Non-Interference

which low(l) ⇒ low(r) can be derived. However, inferring NI specifications
using such a simple static analysis is not possible in general, as shown in
the next example.

BA2

This example was already shown in Figure 3.1, to illustrate the benefit of
using Trace Partitioning. Our goal is to infer the postcondition low(x) ⇒
low(res).

1 method m(x: Int) returns (res: Int)

2 {

3 if (x >= 0) { res := 1 }

4 else { res := 0 }

5 }

When run on the current example, a simple static analysis (again, without a
BDT domain) can only infer the functional specification 0 ≤ res ≤ 1.

On the contrary, a static analysis with a BDT domain run on the product
method is capable of inferring a NI postcondition, as shown below.

Domain Postconditions M1 M2 M3
Oct low(x) ==> low(res) × × ×
Poly low(x) ==> low(res) × × ×

Our analysis also infers functional specifications: here, for example, we infer
0 ≤ r(1) ≤ 1 and 0 ≤ r(2) ≤ 1. In general, if a simple static analysis using
an abstract domain D infers a functional specification e, our analysis (with
D as leaf domain) infers the specifications e(i) if the i-th execution is active.
For this reason, we do not show inferred functional specifications in the rest
of this section, and focus on NI.

BA3

This example shows a case where the merge placement strategies M1 and
M2 lead to a loss in precision, while M3 allows to infer a NI specification.
Our goal is to infer the postcondition low(x) ⇒ low(res).

1 method main(x: Int) returns (res: Int)

2 {

3 var y: Int := 1

4 if (x == 0) {

5 y := 0

6 res := 1

7 }

8 if (y != 0) { res := 2 }

9 }

25

5. Evaluation

Using the M1 strategy, merges on the activation variables for the if-branch
(lines 5–6) are inserted in the product, and thus any information about res
in both executions is lost after these merges.

For this example, the M2 strategy produces a result equivalent to the result
of the M1 strategy. When using the M2 strategy, the set of variables occur-
ring in the arguments of the splits for the first and second if-branch are
{p(1)1 , p(2)1 , x(1), x(2)} and {p(1)2 , p(2)2 , y(1), y(2)}, respectively, where p(1)1 , p(2)1

and p(1)2 , p(2)2 are the activation variables for the respective bodies. Since
these two sets do not overlap, we merge on p(1)1 and p(2)1 after the first trans-
lated if-branch, as with the M1 strategy.

In this particular case, the heuristic used by the M2 strategy leads to a loss
in precision: the partition on p(1)1 and p(2)1 can still improve precision when
combined with the second splits. The M3 strategy, on the other hand, allows
to infer the desired postcondition.

Domain Postconditions M1 M2 M3
Oct low(x) ==> low(res) ×
Poly low(x) ==> low(res) ×

Terauchi

This example is taken from [14], Figure 1. The desired postcondition is
low(y) ⇒ low(l).

Supposing h is high and y is low, a simple taint analysis considers x as
tainted, since it is assigned conditionally on the high input h. In line 8, l
becomes tainted by x, and is not considered a low output.

1 method main(h: Bool , y: Int) returns (l: Int)

2 {

3 var z: Int

4 var x: Int

5 z := 1

6 if (h) { x := 1 }

7 else { x := z }

8 l := x + y

9 }

Semantic reasoning about the values of the variables is needed to infer a NI
postcondition, which is achieved by our framework.

Domain Postconditions M1 M2 M3
Oct

Poly low(y) ==> low(l) × × ×
26

5.1. Non-Interference

Joana

This example (taken from [7], Figure 13, left) is similar to Terauchi. The
desired postcondition is low(l).

1 method inputPIN () returns (res: Int)

2

3 method main() returns (l: Int)

4 {

5 var h: Int

6 h := inputPIN ()

7 if (h < 0) { l := 0 }

8 else { l := 0 }

9 }

A taint analysis considers l as tainted by h in both branches of the if-statement,
and a NI postcondition cannot be inferred, even if l has the same value in
both branches. Here h is considered high because inputPIN has no NI spec-
ification ensuring that h is low.

Our framework is able to infer the desired specification for all three merge
placement strategies.

Domain Postconditions M1 M2 M3
Oct low(l) × × ×
Poly low(l) × × ×

Fibonacci

This example computes the k-th Fibonacci number, which is obviously low
if k is low.

1 method fib(k: Int) returns (res: Int)

2 {

3 var a: Int := 0

4 var b: Int := 1

5 var i: Int := 0

6 while (i < k) {

7 var tmp: Int := b

8 b := a + b

9 a := tmp

10 i := i + 1

11 }

12 res := b

13 }

For this example, the desired postcondition is low(k) ⇒ low(res), and de-
sired loop invariants are low(k) ⇒ low(i), low(k) ⇒ low(a) and low(k) ⇒
low(b).

27

5. Evaluation

Domain Postconditions M1 M2 M3
Oct

Poly low(k) ==> low(res) × × ×
Domain Invariants M1 M2 M3
Oct low(k) ==> low(i) × × ×
Poly low(k) ==> low(i) × × ×

low(k) ==> low(a) × × ×
low(k) ==> low(b) × × ×

Küsters

This example (taken from [9]) is a Viper encoding of a Java program. Both
a and result are static variables in the Java program, which we encode by
explicitly passing a reference parameter global. The body of bar is not spec-
ified.

1 field result: Int

2 field a: Int

3

4 method main(global: Ref , secret: Int)

5 requires acc(global.a, 1)

6 requires acc(global.result , 1)

7 ensures acc(global.a, 1)

8 ensures acc(global.result , 1)

9 {

10 global.a := 42

11 bar(secret)

12 var b: Int

13 b := foo(global , secret)

14 global.result := b

15 }

16

17 method foo(global: Ref , secret: Int) returns (res: Int)

18 requires acc(global.a, 1/2)

19 ensures acc(global.a, 1/2)

20 {

21 var b: Int

22 b := global.a

23 if (secret == 0) { b := b + secret }

24 res := b

25 }

26

27 method bar(secret: Int) // Hidden implementation

To ensure soundness, our analysis needs to know which heap locations are
modified in the body of called methods. In Viper, this information can be
encoded using access permissions. acc(r. f, 1) represents a write permission
on the heap location r. f , and acc(r. f, p) for p < 1 represents a read per-
mission.

28

5.1. Non-Interference

To get access predicates for every method, a pre-analysis could be run on the
program in order to infer access permissions. Since the inference of access
permissions is largely orthogonal to the topic of this thesis, we assume that
methods have been annotated with correct access permissions by the user.

Since main calls foo in its body, an interprocedural analysis is needed to
infer NI specifications for main.

For non-recursive method calls, an interprocedural analysis can be simu-
lated by inferring specifications for the callee (using an intraprocedural anal-
ysis), and using them to transform the abstract state at the method call site
in the caller. In general, we would build the call graph of the program (in
which each node represents a method, and there is a directed edge from
node m to node n if the method m calls the method n).

Without recursive calls, this graph is loop-free, and a topological sorting of
the graph can be computed. Since the product program allows to reason
modularly about hyperproperties, we could infer specifications for the last
method in the topological order, and use these specifications to infer specifi-
cations for the second to last method, and so on up until the root method.

The implementation of such an approach is beyond the scope of this thesis,
we simulate the described process manually.

Our analysis produces the following postcondition for the method foo:

Domain Postconditions M1 M2 M3
H×Oct low(old(global.a)) ==> low(res) × × ×
H×Poly low(old(global.a)) ==> low(res) × × ×

In Viper, the old keyword (used in postconditions) allows one to reference
the value of an expression at the beginning of a method. Sample does
not support old expressions: we therefore transform foo’s postcondition
low(old(global.a)) ⇒ low(res) into a precondition low(global.a) and a post-
condition low(res). This pair of pre- and postcondition is then used to infer
the following postconditions for main:

Domain Postconditions M1 M2 M3

H×Oct

low(global.a) × × ×
low(global.result) × × ×

H×Poly

low(global.a) × × ×
low(global.result) × × ×

ZeroEntries

The method zero entries below counts the number of zero-entries in the
Viper sequence A.

29

5. Evaluation

1 method zero_entries(A: Seq[Int]) returns (count: Int)

2 {

3 count := 0

4 var i: Int := 0

5 while (i < |A|) {

6 if (A[i] == 0) { count := count + 1 }

7 i := i + 1

8 }

9 }

Our framework does not support Viper sequences in their native form, as
they appear in this program. Therefore, we encode this method such that
it uses references, as shown below. Since our framework provides a leaf
domain capable of abstracting heap locations, we can infer interesting speci-
fications on this new method.

The length of the sequence is encoded as an Int field. An array access A[i]
is encoded as a method call get(A, i). The method get guarantees, via its
postcondition, that get(A, i) is low if both A and i are low.

1 field length: Int

2

3 method get(A: Ref , i: Int) returns (res: Int)

4 requires acc(A.length , 1/2)

5 requires 0 <= i && i < A.length

6 ensures (low(A) && low(i)) ==> low(res)

7 ensures acc(A.length , 1/2)

8

9 method zero_entries(A: Ref) returns (count: Int)

10 requires acc(A.length , 1/2)

11 ensures acc(A.length , 1/2)

12 {

13 count := 0

14 var i: Int := 0

15 while (i < A.length) {

16 var x: Int

17 x := get(A, i)

18 if (x > 0) { count := count + 1 }

19 i := i + 1

20 }

21 }

In the product program, we add two assumptions to ensure that properties
that hold for sequence still hold in the rewritten method. These assumptions
are:

• (p(1) ⇒ A(1) ̸= null) ∧ (p(2) ⇒ A(2) ̸= null), since a Viper sequence is
never null.

• (p(1) ∧ p(2)) ⇒ A(1) = A(2) ⇒ A(1).length(1) = A(2).length(2), i.e., if
a A is low, then A.length is low as well. To ensure that the method

30

5.1. Non-Interference

annotated by our inferred specifications can be directly fed to a verifier,
we translate our assumptions and add them as preconditions to the
original program. Thus, the resulting method will have preconditions
A != null and low(A) ==> low(A.length).

Applying our analysis to the rewritten method, we can infer the following
postconditions and loop invariants:

Domain Postconditions M1 M2 M3
H×Oct low(A) ==> low(count) × × ×
H×Poly low(A) ==> low(count) × × ×

Domain Invariants M1 M2 M3

H×Oct

low(A) ==> low(i) × × ×
low(A) ==> low(count) × × ×

H×Poly

low(A) ==> low(i) × × ×
low(A) ==> low(count) × × ×

We believe that the translation from a program using sequences to an equiv-
alent program using the heap can be fully automated. Expressions |A| are
translated as A.length. For a statement containing an access A[i], we assign
get(A, i) to a fresh temporary variable, which replaces A[i] in the trans-
lated statement. The assumptions described above hold for all sequences,
and can thus be inserted in the translated program automatically. However,
specifications containing accesses A[i] cannot be translated to a method call
get(A, i), since only pure expressions are allowed in Viper specifications.

Eilers

This example (adapted from [6], Figure 1) is similar to the example ZeroEn-
tries presented above.

31

5. Evaluation

1 method is_female(person: Int) returns (res: Int)

2 {

3 if (person >= 0) { res := 1 } else { res := 0 }

4 }

5

6 method main(people: Seq[Int]) returns (count: Int)

7 requires acc(people.length , 1/2)

8 ensures acc(people.length , 1/2)

9 {

10 var i: Int := 0

11 count := 0

12 while (i < |people |)

13 {

14 var current: Int

15 current := people[i]

16 var female : Int

17 female := is_female(current)

18 count := count + female

19 i := i + 1

20 }

21 }

As before, we rewrite the method to use objects, and make the same assump-
tions. The rewritten method is shown below.

1 field length: Int

2 method get(arr: Ref , i: Int) returns (res: Int)

3 requires acc(arr.length , 1/2)

4 requires 0 <= i && i < arr.length

5 ensures (low(arr) && low(i)) ==> low(res)

6 ensures acc(arr.length , 1/2)

7

8 method is_female(person: Int) returns (res: Int)

9 {

10 if (person >= 0) { res := 1 } else { res := 0 }

11 }

12

13 method main(people: Ref) returns (count: Int)

14 requires acc(people.length , 1/2)

15 ensures acc(people.length , 1/2)

16 {

17 var i: Int := 0

18 count := 0

19 while (i < people.length)

20 {

21 var current: Int

22 current := get(people , i)

23 var female : Int

24 female := is_female(current)

25 count := count + female

26 i := i + 1

27 }

28 }

32

5.1. Non-Interference

Simulating an interprocedural analysis manually, as for Küsters, we first
infer the following postcondition for is female:

Domain Postconditions M1 M2 M3
H×Oct low(person) ==> low(res) × × ×
H×Poly low(person) ==> low(res) × × ×

This postcondition is then used to infer the following postconditions and
invariants for main:

Domain Postconditions M1 M2 M3
H×Oct

H×Poly low(people) ==> low(count) × × ×
Domain Invariants M1 M2 M3
H×Oct low(people) ==> low(i) × × ×
H×Poly

low(people) ==> low(i) × × ×
low(people) ==> low(count) × × ×

5.1.2 Performance

Program Loop Call Heap Domain M1 M2 M3

BA1
Oct 0.01* 0.01* 0.01*
Poly 0.04 0.05 0.02

BA2
Oct 0.04 0.04 0.06
Poly 0.11 0.12 0.17

BA3
Oct 0.06* 0.04* 0.08
Poly 0.29* 0.11* 0.19

Terauchi

Oct 0.09* 0.06* 0.08*
Poly 0.41 0.40 0.48

Joana × Oct 0.03 0.02 0.03
Poly 0.10 0.05 0.07

Fibonacci × Oct 0.44* 0.42* 0.42*
Poly 2.05 2.10 2.03

Küsters × × H×Oct 0.54 0.44 1.39
H×Poly 2.69 3.04 7.03

ZeroEntries × × H×Oct 3.34 3.23 3.37
H×Poly 10.2 14.1 13.5

Eilers × × × H×Oct 7.17* 6.87* 6.95*
H×Poly 10.2 10.4 9.56

Table 5.1: Evaluated examples. We show the used language features and the leaf domain. The
rightmost column shows the running time (in seconds) of the analysis for the merge placement
strategies M1, M2, and M3. Entries marked with an asterisk denote combinations of parameters
for which no meaningful specification could be inferred.

33

5. Evaluation

The running times of the analysis for the examples presented in this section
are shown in Table 5.1.

For all but one example from this corpus, the desired specifications can be
inferred using the M1 strategy. For the remaining example BA3, the M3
strategy allows us to attain the necessary precision.

Using Oct or H×Oct as our leaf domain, we can infer NI specifications for 5
out of 9 examples; when using Poly or H×Poly, we can infer specifications
for all of them, including those containing loops, method calls and heap-
manipulating statements. For programs containing loops, we are able to
infer NI loop invariants.

All specifications inferred using Oct and Poly can also be inferred using
H×Oct and H×Poly, respectively, albeit slightly slower (because the analy-
sis carries an additional top heap abstract state).

The complexity of the leaf domain has a strong influence on the runtime. A
reduced product of a heap domain with a numerical domain stores more
information than the numerical domain alone, and is thus typically slower.
Similarly, the polyhedra domain is more precise than the octagon domain,
and typically leads to a slower analysis. In addition, the Java bindings
for Apron (the library implementing the polyhedra abstract domain) are
not thread-safe, which prevented us from using parallelism for Poly and
H×Poly leaf domains. Moreover, our implementation of the storeless heap
domain is not optimized, which certainly penalized the efficiency of the
analysis for heap-manipulating programs.

On this corpus, the average increase in runtime when using Poly instead
of Oct (or H×Poly instead of H×Oct) is 273% for M1, 319% for M2, and
253% for M3.

In general, if a program contains an assignment of the form x := y + z, a
polyhedra leaf domain is necessary to infer NI specifications, because the
octagon domain does not store the constraint x = y + z precisely.

5.2 Comparator Implementations

In this section, our goal is to infer Antisymmetry specifications. The exam-
ples in this section are Java examples taken from [13], which we encoded in
Viper. The Viper code of these examples is shown in Appendix A.

Each example contains a method compare(a: Ref, b: Ref) with an Int

return variable r, which implements the Java Comparator interface. Our
goal is to infer the postcondition p(1) ∧ p(2) ⇒ a(1) = b(2) ∧ a(2) = b(1) ⇒
r(1) = −r(2) on the products, corresponding to the antisymmetry property
compare(a, b)= −compare(b, a).

34

5.2. Comparator Implementations

In order to achieve this, we insert the assumption a(1) = b(2) ∧ a(2) = b(1) at
the start of the compare methods.

For Symmetry-like properties (i.e., properties we can infer by swapping in-
puts in the executions), we need not duplicate the fields in the product, as
described in Section 2.2.2. Instead, the original fields could be kept in the
product, and a field access o. f could then be translated as o(i). f in the i-th
execution.

For the sake of generality, we did not use this simpler encoding of the heap
for the examples in this section. Thus, it is necessary to add an assumption
split with condition o. f (1) = o. f (2) for each reference parameter o and each
field f in the product.

An element of the (storeless) heap domain abstracting the constraint a(1) =
b(2) ∧ a(2) = b(1) for reference variables a(1), a(2), b(1), b(2) maps a(1), b(2) to
{O1}, and a(2), b(1) to {O1, O2} for some abstract objects O1, O2. However,
this abstraction is too imprecise to say with certainty that a(2) = b(1). To
palliate this imprecision, we insert a split on a(1) = a(2), which separates
the cases where a(1) = b(2) = a(2) = b(1) (in the left subtree) and a(1) =
b(2) ̸= a(2) = b(1) (in the right subtree). This split has the additional benefit
of considering the case compare(a, a) explicitly. This additional split is not
tailored to our examples or to the desired specification, and can be used for
general Symmetry-like hyperproperties for heap-manipulating methods.

Using our approach, we are able to infer the desired postcondition for all
shown examples. Additionally, we infer the postcondition p(1) ∧ p(2) ⇒
a(1) = b(2) ∧ a(2) = b(1) ∧ a(1) = a(2) ⇒ r(1) = 0 (and similarly for r(2)) for all
shown examples. This postcondition corresponds to the reflexive property
compare(a, a)= 0.

We show the running times in Table 5.2. For each example, we ran the anal-
ysis using H×Oct and H×Poly, and measured the runtime for the simplest
domain with which we could infer the desired specification.

Program Fields Domain M1 M2 M3
Time 2 H×Oct 3.71 3.73 3.78
Container 4 H×Oct 10.0 14.5 12.5
Match 3 H×Poly 2.53 2.72 3.75
CollItem 4 H×Poly 11.8 12.1 19.3

Table 5.2: Running times (in seconds) for implementations of the Java Comparator interface,
translated to Viper.

Not all examples from [13] are shown here. Some of the other examples con-
tain language constructs that our framework does not handle, e.g. Rational
variables. The remaining examples contain objects which behave as collec-

35

5. Evaluation

tions, i.e., which contain a method get(i) returning the i-th element. Due to
the construction of the product, the pure function get is not encoded with
enough precision in the product to allow the inference of Symmetry-like
specifications. We encode the pure function get(i: Int) as a Viper method
get(r: Ref, i: Int) annotated with a postcondition ensuring determin-
ism. In the product, this guarantees that after executing the statement

x(1), x(2) := get(p(1), p(2), r(1), r(2), i(1), i(2)),

x(1) = x(2) if r(1) = r(2) and i(1) = i(2), if both activation variables are true.
However, due to the construction of the product, we cannot specify that after
executing

x(1), x(2) := get(p(1), p(2), a(1), a(2), i(1), i(2));
y(1), y(2) := get(p(1), p(2), b(1), b(2), i(1), i(2)),

x(1) = y(2) if a(1) = b(2) and i(1) = i(2), provided both executions are active.
This causes our framework to be imprecise for such cases. This loss in pre-
cision stems from the construction of the program itself. It is also worth
noting that this problem occurs when equalities between different variables
in different executions appear in the left hand side of the hyperproperty. For
example, NI hyperproperties do not suffer from this problem, because only
equalities between the same variable in different executions appear on the
left hand side.

5.3 Miscellaneous Examples

In this section, we infer Symmetry, Reflexivity and Monotonicity specifica-
tions.

5.3.1 Euclidean Algorithm - Symmetry and Reflexivity

A Viper implementation of Euclid’s algorithm for the computation of the
greatest common divisor of two integers is shown below.

1 method gcd(i: Int , j: Int) returns (res: Int)

2 {

3 var a: Int := i

4 var b: Int := j

5 while (a != b) {

6 if (a > b) { a := a - b }

7 else { b := b - a }

8 }

9 res := a

10 }

36

5.3. Miscellaneous Examples

For this example, our goal is to infer a Symmetry-like specification about
gcd, i.e., a relationship between gcd(i, j) and gcd(j, i).

Similarly to the examples in Section 5.2, we insert the assumption i(1) =
j(2) ∧ i(2) = j(1), which states that the inputs are swapped in the two execu-
tions. As before, we also insert a split on i(1) = i(2). In this case, this split
is not necessary (it only increases the precision of a heap leaf domain), but
it has the advantage of making the case gcd(i, i) explicit. Generally, we in-
sert this split for all Symmetry-like hyperproperties, since we can then infer
Reflexivity specifications along with Symmetry-like specifications.

The postconditions inferred by our framework are shown below. For the
sake of readability, we write A for rel(i, 1) == rel(j, 2) && rel(i, 2)

== rel(j, 1) and A′ for A && rel(i, 1) == rel(i, 2).

Domain Postconditions M1 M2 M3
Oct A′ ==> rel(res, 1) == rel(res, 2) × × ×
Poly

A ==> rel(res, 1) == rel(res, 2) × × ×
A′ ==> rel(res, 1) == rel(i, 1) × × ×
A′ ==> rel(res, 2) == rel(i, 2) × × ×

Thus, when using Poly, we can infer that gcd(i, j) = gcd(j, i), and that
gcd(i, i) = i.

Our framework also infers the following loop invariants:

Domain Invariants M1 M2 M3
Oct

Poly

A ==> rel(a, 1) == rel(b, 2) × × ×
A ==> rel(a, 2) == rel(b, 1) × × ×
A′ ==> rel(a, 1) == rel(i, 1) × × ×
A′ ==> rel(a, 2) == rel(i, 2) × × ×

The first two loop invariants state that if i and j are swapped in the two
executions, then a and b are also swapped. The last two loop invariants
state that if i = j, a = i holds in both executions.

The (averaged) running times are below 0.5 seconds for all three strategies,
for both Oct and Poly.

5.3.2 Monotonicity of Multiplication

The following Viper method returns the multiplication of its two integer
arguments (provided they are non-negative).

37

5. Evaluation

1 method mult(x: Int , y: Int) returns (res: Int)

2 {

3 var i: Int

4 i := 0

5 res := 0

6 while (i < y) {

7 res := res + x

8 i := i + 1

9 }

10 }

Our goal is to infer properties about the monotonicity of multiplication, i.e.,
x ≤ x′ ⇒ x · y ≤ x′ · y for non-negative x, x′, and y.

The translation of this specification in the product is p(1) ∧ p(2) ⇒ x(1) ≤
x(2) ∧ y(1) = y(2) ⇒ res(1) ≤ res(2).

To infer the desired specification, we insert an initial split on the condition
x(1) ≤ x(2) ∧ y(1) = y(2), which appears in the left hand side of our specifi-
cation. This split is not tailored to our example, and can be inserted for all
programs on which we want to infer Monotonicity specifications.

The postconditions inferred by our framework are shown below. We write
A for rel(x, 1) <= rel(x, 2) && rel(y, 1) == rel(y, 2).

Domain Postconditions M1 M2 M3
Oct

Poly A ==> rel(res, 1) <= rel(res, 2) × × ×
We also infer the following loop invariants:

Domain Invariants M1 M2 M3
Oct A ==> rel(i, 1) == rel(i, 2) × × ×
Poly

A ==> rel(i, 1) == rel(i, 2) × × ×
A ==> rel(res, 1) <= rel(res, 2) × × ×

For all three merge strategies, the averaged running times were below 0.4
seconds for Oct, and below 1.3 seconds for Poly.

5.4 Discussion

Our methodology allows to infer various hyperproperties (NI, Symmetry,
Monotonicity) on programs, without having to develop an analysis specific
to a given hyperproperty. Our approach can infer NI specifications where
conventional approaches (e.g., taint analyses) are too imprecise to yield use-
ful results.

Our approach handles non-trivial language features like loops and heap-
manipulating programs. Additionally, we can encode sequences as refer-

38

5.4. Discussion

ences, infer specifications for the encoded programs, which can then be
translated back to the original.

We can simulate an interprocedural analysis for non-recursive methods by
inferring specifications on the callee, and applying them at the call site in
the caller.

We have evaluated our framework on a corpus of examples using both the
octagon and polyhedra domains in the leaves of our BDT domain. The
polyhedra domain is more precise than the octagon domain and allows to
infer more specifications in general, at the expense of speed.

The precision of our abstract domain is limited by the precision of the leaf
domain. As an example, a method R(a:Int, b:Int) with a boolean return
variable res is said to be total if R(a, b)∨ R(b, a) for all a and b. Totality is
a 2-hyperproperty, and can be expressed as p(1) ∧ p(2) ⇒ a(1) = b(2) ∧ a(2) =
b(1) ⇒ res(1) ∨ res(2) in a 2-product. To be able to infer such a specifica-
tion, a leaf abstract domain with disjunctions (i.e., capable of expressing the
constraint res(1) ∨ res(2) precisely) is needed.

Similarly, R implements a transitive binary relation on integers if R(a, b) ∧
R(b, c) ⇒ R(a, c). This 3-hyperproperty can be expressed in a 3-product
as p(1) ∧ p(2) ∧ p(3) ⇒ a(1) = a(3) ∧ b(1) ∧ a(2) ∧ b(2) = b(3) ⇒ ¬res(1) ∨
¬res(2) ∨ res(3). Again, this specification requires a disjunctive leaf domain
to be inferred.

The implementation of such a disjunctive domain is beyond the scope of this
thesis, which is why this chapter contains no examples for totality and tran-
sitivity. Nevertheless, we believe that given an implementation of a disjunc-
tive abstract domain, such hyperproperties can be inferred without much
additional effort.

39

Chapter 6

Conclusion and Future Work

In this thesis, we developed a static analysis for the inference of general
hyperproperty specifications.

Our analysis constructs a product program, which simulates several exe-
cutions of the original program, and use Abstract Interpretation to infer
specifications on the product. To compensate the loss in program structure
introduced by the product construction, we used trace partitioning to restore
the control flow information in the product. This is achieved by instrument-
ing the product program with commands, which inform the analysis of the
partitions on the traces it has to execute. To keep the size of our abstract do-
main reasonably small, we also inserted commands which explicitly inform
the analysis of partitions it should forget about. This instrumentation of the
product program is done statically, before running the analysis.

We also insert commands in the product program which tell the analysis to
partition traces on interesting properties of inputs. For a given hyperprop-
erty, these partitioning expressions are conditions on inputs appearing on
the left-hand-side of an implication.

Our abstract domain uses Binary Decision Trees to store partitioning infor-
mation, and is parametric in its leaf abstract domain. This allows users to
provide abstract domains that are relevant to their specific applications, and
lets them tune the precision-speed trade-off of the domain.

Using our approach, we infer Non-Interference, Symmetry and Monotonic-
ity properties on programs, which include loops, method calls, heap manip-
ulations, and sequences.

The main drawback of our methodology is the size of our abstract states,
which grows exponentially with the number of trace partitions. Various
optimizations have been implemented to speed up the analysis, but more
work can certainly be done to speed it up even more.

41

6. Conclusion and Future Work

A possible extension to this thesis could explore other hyperproperties not
discussed or evaluated in this report. Further implementation efforts could
also be considered, e.g., a backward analysis to infer preconditions of meth-
ods, or a truly interprocedural analysis capable of handling recursive meth-
ods.

42

Appendix A

Appendix

The Viper examples evaluated in Section 5.2 are shown below.

Time

1 field ora: Int

2 field volume_totale : Int

3

4 method Int_compare(o1: Int , o2: Int) returns (res: Int)

5 ensures (rel(o1 , 0) == rel(o2 , 1) && rel(o2, 0) == rel(o1, 1))

6 ==> rel(res , 0) == -rel(res , 1)

7

8 method compare(o1: Ref , o2: Ref) returns (res: Int)

9 requires acc(o1.ora , 1/2)

10 requires acc(o2.ora , 1/2)

11 requires acc(o1.volume_totale , 1/2)

12 requires acc(o2.volume_totale , 1/2)

13 ensures acc(o1.ora , 1/2)

14 ensures acc(o2.ora , 1/2)

15 ensures acc(o1.volume_totale , 1/2)

16 ensures acc(o2.volume_totale , 1/2)

17 {

18 var cmp : Int

19 cmp := Int_compare(o1.ora , o2.ora)

20 if (cmp == 0){

21 cmp := Int_compare(o1.volume_totale , o2.volume_totale)

22 }

23 res := cmp

24 }

43

A. Appendix

Container

1 field departureTime: Int

2 field departureMaxDuration: Int

3 field departureTransportCompany: Int

4 field departureTransportType: Int

5

6 method Int_compare(o1: Int , o2: Int) returns (res: Int)

7 ensures (rel(o1 , 0) == rel(o2 , 1) && rel(o2 , 0) == rel(o1 , 1))

8 ==> rel(res , 0) == -rel(res , 1)

9

10 method compare(o1: Ref , o2: Ref) returns (res: Int)

11 requires acc(o1.departureTime , 1/2)

12 requires acc(o2.departureTime , 1/2)

13 requires acc(o1.departureMaxDuration , 1/2)

14 requires acc(o2.departureMaxDuration , 1/2)

15 requires acc(o1.departureTransportCompany , 1/2)

16 requires acc(o2.departureTransportCompany , 1/2)

17 requires acc(o1.departureTransportType , 1/2)

18 requires acc(o2.departureTransportType , 1/2)

19

20 ensures acc(o1.departureTime , 1/2)

21 ensures acc(o2.departureTime , 1/2)

22 ensures acc(o1.departureMaxDuration , 1/2)

23 ensures acc(o2.departureMaxDuration , 1/2)

24 ensures acc(o1.departureTransportCompany , 1/2)

25 ensures acc(o2.departureTransportCompany , 1/2)

26 ensures acc(o1.departureTransportType , 1/2)

27 ensures acc(o2.departureTransportType , 1/2)

28 {

29 var rv : Int

30

31 rv := Int_compare(o1.departureTime , o2.departureTime)

32 if (rv == 0) {

33 rv := Int_compare(o1.departureMaxDuration ,

34 o2.departureMaxDuration)

35 if (rv == 0) {

36 rv := Int_compare(o1.departureTransportCompany ,

37 o2.departureTransportCompany)

38 if (rv == 0) {

39 rv := Int_compare(o1.departureTransportType ,

40 o2.departureTransportType)

41 }

42 }

43 }

44 res := rv

45 }

44

Match

1 field score: Int

2 field seq1start: Int

3 field seq2start: Int

4

5 method Int_compare(o1: Int , o2: Int) returns (res: Int)

6 ensures (rel(o1 , 0) == rel(o2 , 1) && rel(o2, 0) == rel(o1, 1))

7 ==> rel(res , 0) == -rel(res , 1)

8

9 method compare(o1: Ref , o2: Ref) returns (res: Int)

10 requires acc(o1.score , 1/2)

11 requires acc(o2.score , 1/2)

12 requires acc(o1.seq1start , 1/2)

13 requires acc(o2.seq1start , 1/2)

14 requires acc(o1.seq2start , 1/2)

15 requires acc(o2.seq2start , 1/2)

16

17 ensures acc(o1.score , 1/2)

18 ensures acc(o2.score , 1/2)

19 ensures acc(o1.seq1start , 1/2)

20 ensures acc(o2.seq1start , 1/2)

21 ensures acc(o1.seq2start , 1/2)

22 ensures acc(o2.seq2start , 1/2)

23 {

24 res := Int_compare(o1.score , o2.score)

25 if (res == 0) {

26 res := Int_compare(o1.seq1start + o1.seq2start ,

27 o2.seq1start + o2.seq2start)

28 }

29 }

45

A. Appendix

CollItem

1 field getCardSet: Int

2 field getCardRarity: Int

3 field getCardId: Int

4 field cardType: Int

5

6 method Int_compare(o1: Int , o2: Int) returns (res: Int)

7 ensures (rel(o1 , 0) == rel(o2 , 1) && rel(o2 , 0) == rel(o1 , 1))

8 ==> rel(res , 0) == -rel(res , 1)

9

10

11 method compare(o1: Ref , o2: Ref) returns (res: Int)

12 requires acc(o1.getCardSet , 1/2)

13 requires acc(o2.getCardSet , 1/2)

14 requires acc(o1.getCardRarity , 1/2)

15 requires acc(o2.getCardRarity , 1/2)

16 requires acc(o1.getCardId , 1/2)

17 requires acc(o2.getCardId , 1/2)

18 requires acc(o1.cardType , 1/2)

19 requires acc(o2.cardType , 1/2)

20

21 ensures acc(o1.getCardSet , 1/2)

22 ensures acc(o2.getCardSet , 1/2)

23 ensures acc(o1.getCardRarity , 1/2)

24 ensures acc(o2.getCardRarity , 1/2)

25 ensures acc(o1.getCardId , 1/2)

26 ensures acc(o2.getCardId , 1/2)

27 ensures acc(o1.cardType , 1/2)

28 ensures acc(o2.cardType , 1/2)

29 {

30 if (o1 == o2){

31 res := 0

32 } else {

33 res := Int_compare(o1.getCardSet , o2.getCardSet)

34 if (res == 0) {

35 res := Int_compare(o1.getCardRarity , o2.getCardRarity)

36 if (res == 0) {

37 res := Int_compare(o1.getCardId , o2.getCardId)

38 if (res == 0) {

39 res := o1.cardType - o2.cardType

40 }

41 }

42 }

43 }

44 }

46

Bibliography

[1] J. Chen and P. Cousot. A binary decision tree abstract domain functor.
In S. Blazy and T. Jensen, editors, Static Analysis - 22nd International
Symposium (SAS 2015), volume 9291 of LNCS, pages 36–53. Springer,
2015.

[2] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, California, 1977. ACM Press, New York, NY.

[3] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York,
NY.

[4] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. The reduced
product of abstract domains and the combination of decision proce-
dures. In M. Hofmann, editor, 14th International Conference on Fon-
dations of Software Science and Computation Structures (FoSSaCS 2011),
Saarbrücken, Germany, volume 6604 of Lecture Notes in Computer Science,
pages 456–472. Springer-Verlag, Heidelberg, March 26 – April 3, 2011.

[5] Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis
for java with strong updates. In James Noble, editor, ECOOP 2012 –
Object-Oriented Programming, pages 665–687, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[6] M. Eilers, P. Müller, and S. Hitz. Modular product programs. In Euro-
pean Symposium on Programming (ESOP), 2018.

47

Bibliography

[7] Dennis Giffhorn and Gregor Snelting. A new algorithm for low-
deterministic security. International Journal of Information Security,
14(3):263–287, Jun 2015.

[8] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical ab-
stract domains for static analysis. In Ahmed Bouajjani and Oded Maler,
editors, Computer Aided Verification, pages 661–667, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[9] Ralf Küsters, Tomasz Truderung, Bernhard Beckert, Daniel Bruns,
Michael Kirsten, and Martin Mohr. A hybrid approach for proving non-
interference of java programs. In Computer Security Foundations Sympo-
sium (CSF), 2015 IEEE 28th, pages 305–319. IEEE Computer Society, July
2015.

[10] L. Mauborgne and X. Rival. Trace partitioning in abstract interpreta-
tion based static analyzers. In M. Sagiv, editor, European Symposium on
Programming (ESOP), volume 3444 of LNCS. Springer, 2005.

[11] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Com-
putation (HOSC), 19(1):31–100, 2006. http://www-apr.lip6.fr/~mine/
publi/article-mine-HOSC06.pdf.

[12] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[13] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-
safety properties. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’16, pages
57–69, New York, NY, USA, 2016. ACM.

[14] Tachio Terauchi and Alex Aiken. Secure information flow as a safety
problem. In Chris Hankin and Igor Siveroni, editors, Static Analysis,
pages 352–367, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

48

http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf

	Contents
	Introduction
	Preliminaries
	Hyperproperties
	Product Program
	Translating Statements
	Modeling the Heap

	Translating Specifications
	Abstract Interpretation

	Approach
	Motivation
	Trace Partitioning
	Abstract Domain
	Binary Decision Trees
	Operators
	Splits and Merges

	Storeless Heap Domain
	Motivation

	Instantiations
	Specification Inference

	Implementation
	Splits
	Merges
	Property-dependent splits
	Parallelism
	Explicit Bounds

	Evaluation
	Non-Interference
	Postconditions and Loop Invariants
	Performance

	Comparator Implementations
	Miscellaneous Examples
	Euclidean Algorithm - Symmetry and Reflexivity
	Monotonicity of Multiplication

	Discussion

	Conclusion and Future Work
	Appendix
	Bibliography

