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Abstract—Collaborative learning enables participants to train
a joint machine learning model without explicitly revealing their
private training data, and is thus a natural candidate for tasks
requiring sensitive data.

However, it has been shown that updates observed during the
learning process of a source task leak unintended information
about the clients’ private data, which allows an adversary to
infer target properties of the clients’ private data. We replicate
such attacks for a wide range of target properties on a dataset of
face images using two different models, and explore the variation
of the privacy loss depending on the source.

Finally, we use transfer learning to compute affinity measures
between source and target tasks, and show that they are good
predictors for the privacy loss, particularly for completely unre-
lated source and target tasks.

I. INTRODUCTION

Deep learning models are known for their capacity to
encode complex feature representations of their training data.
This makes them a likely target for property inference attacks
that aim to infer properties of the training data that are
seemingly unrelated with the main learning objective.

Preliminary work shows that a passive adversary that either
has direct access to the network weights [1] or infers the
model’s feature activations from gradient updates [2] can use
the learned features to infer training data properties. This
inference constitutes a clear privacy breach if the inference
is specific to the training data and considered orthogonal to
the learning task. A privacy-preserving model should only leak
information that characterizes data records by their class label.

To combat inference attacks on unintended features learned
by deep network models, previous work suggests training
models under a least-privilege principle, i.e., learning only
the features relevant to a given task [3], [4], [5].

While this should reduce unintended information leakage
about sensitive data properties, it is unclear whether it is
actually possible to learn separate feature representations for
all combinations of learning and target tasks, i.e., whether a
model that is trained to perform well on a specific learning
task does not inevitably capture features that can be exploited
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by adversaries to infer data properties considered independent
of the learning objective.

This unintended feature learning is successfully being ex-
ploited in transfer learning, a technique where a machine
learning model trained on one task is re-used as a basis to train
a model for another task, achieving very good performance
with comparatively little computation.

Transfer learning has been used to computationally derive
affinities between visual tasks [6], where two tasks are said
to have high affinity if one can effectively train a transfer
model from one to the other. Task affinity thus seems a suitable
candidate to estimate the information about a target task that
is encoded by a model trained on a source task.

In this project, we explore whether a similar computational
approach to learning task affinities can be applied to anticipate
and quantify unexpected information leakage (measured as the
success of property inference attacks) in deep learning models.

This report is organized as follows: we first introduce some
background concepts (Section II), present our attacker model
and attack mechanism (Section III), as well as the dataset and
model architectures used in our experiments (Section IV). We
then show the results of our attack experiments in Section V,
present task affinities (Section VI, and examine how they can
be used to predict privacy loss in Sections VII-VIII. Finally,
we discuss limitations and future work directions (Section IX)
and conclude (Section X)

II. BACKGROUND

A. Machine Learning

1) Models: A machine learning model is a function fθ :
X → Y parametrized by a set of parameters θ.

In this project, we focus on the supervised learning of
classification tasks, which requires a labelled dataset of pairs
(x, y) ∈ X × Y . We work with binary classifiers for images,
i.e., our models map images to binary labels in {0, 1}.

Neural networks are a widely used type of machine learning
models composed of layers of "neurons". Fully connected
layers matrix-multiply their input with their parameters, while
convolutional layers apply a convolution instead. Deep neural
networks are neural networks that are composed of many lay-
ers, and which are known for their ability to encode complex
features of their inputs. Convolutional neural networks (CNNs)
are a specialized type of neural networks that use at least one
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convolutional layer, and that have in particular proved to be
very effective for visual tasks.

2) Training: Machine learning models can be trained by
minimizing a loss function L(·), which measures how bad a
model is at predicting outputs from inputs. Stochastic Gradient
Descent (SGD) iteratively minimizes the loss function by
modifying the parameters θ along the direction of the steepest
descent ∇θL(b), as estimated over a batch b of training
data. SGD is often parametrized by a learning rate η that
controls to what extent the parameters are updated, but there
are more sophisticated versions that update the parameters
using heuristics. The parameters used to control the training
procedure (like the learning rate) are called hyperparameters.

Transfer learning is a supervised learning technique that
reuses weights of a pre-trained model to train a new model
on a different but related task. For a suitable choice of tasks
and pre-trained model, transfer learning allows to train a new
model much more efficiently than training it from scratch.

B. Collaborative Learning

Collaborative learning is a technique that trains a machine
learning model across multiple parties holding local datasets,
without exchanging them. Collaborative learning enables mul-
tiple parties to build a joint model without sharing data, and
is thus attractive for tasks requiring sensitive or private data.

In this project, we focus on synchronized SGD, which is
shown in Alg. 1 (adapted from [2]).

In every training round, each client gets the current model
from the server, computes gradient updates from its local data,
and sends the updates to the server. The server then applies
SGD on the parameters using the aggregated updates from all
clients, and starts a new training round.

Algorithm 1 FedSGD: synchronized, federated SGD

Input: Clients c1, . . . , cK , learning rate η, loss function L
Output: Joint model parameters θT

Server initializes θ0
for t = 0 to T − 1 do

for each client ck do
Client samples a batch b from its training set Dktrain
Client computes local gradients gkt ← ∇θtL(b)
Client sends gkt to the server

end for
Server updates model parameters θt+1 ← θt − η

∑
k g

k
t

Server sends updated model θt+1 to all clients
end for

Federated learning with model averaging is a similar tech-
nique to FedSGD, where client perform update their local
model parameters in several rounds before sending their up-
dated models to the server. The server then averages all client
model updates to obtain the new joint model. For the sake of
more efficient experiments and a simplified analysis, we do
not consider federated learning with model averaging for this
project.

III. PROPERTY INFERENCE ATTACKS

A wide variety of privacy concerns and definitions have
been identified and discussed for machine learning. In this
project, we focus on property inference, and refer to [7] for an
extensive discussion of other privacy risks in machine learning.

A. Threat model

For a machine learning model trained on a source task, the
goal of a property inference adversary is to infer properties
that are true for a subset of the training inputs, and that are
unrelated to the source task (in the following, we call such
properties target tasks). In this project, we focus on batch
property inference (as defined in [2]), where the adversary’s
goal is to determine if an observed update is based on batch
without or without a given target property.

While the adversary does not have access to the clients’
training data, it has access to an auxiliary dataset Dadv,
annotated for both source and target tasks. For well-studied
tasks (e.g., classification of images or text), such datasets exist
and are publicly available. In our binary classification setting,
we write Dadv

+ for the auxiliary data with positive labels for
the target task, and Dadv

− for the auxiliary data with negative
labels.

This threat model covers collaborative learning with a cen-
tral aggregation server, decentralized learning (e.g., using peer-
to-peer networks), as well as local training. In the following,
we focus on a centralized collaborative learning scenario.

Our adversary is passive, and is not able to interfere with
an FedSGD run and to modify its output, but it observes
sequential model updates θt during training. The adversary
could gather such observations by eavesdropping on the server,
on the client, or on the communication between them.

B. Attack mechanism

During training, gradients are computed using backpropaga-
tion, an optimization which allows gradients to be computed
efficiently in a single pass from the last layer to the first.

For sequential, fully-connected layers hl, hl+1 with hl+1 =
Wl · hl for a weight matrix Wl, the gradients at layer l are
given by ∂L

∂Wl
= ∂L

∂hl+1

∂hl+1

∂Wl
= ∂L

∂hl+1
· hl. Similarly, for a

convolutional layer, the gradients at layer l are convolutions
of the gradients at layer l + 1 and the features at layer l.

Thus, an adversary can infer feature values by observing
the gradients. These features are not only based on the clients’
private training data, but are actively trained to encode com-
plex information about the training data, which also includes
information unrelated to the source task.

Algorithm 2 (adapted from [2]) shows how to construct a
batch property classifier during training: the adversary builds
two datasets G+ and G− of gradients computed on batches
with (respectively without) the property. When the adversary
is satisfied with the size of these datasets, it trains a binary
classifier to detect whether a given gradient was computed on
a batch with the property.

2



Algorithm 2 Batch Property Classifier

Input: Adversary’s auxiliary dataset Dadv
+ and Dadv

− , Observa-
tions of model parameters θ0, . . . , θT

Output: Batch property classifier fprop
Initialize empty training datasets G+ ← ∅ and G− ← ∅
while adversary observes a new update θt do

Sample batches b+ ⊂ Dadv
+ and b− ⊂ Dadv

−
G+ ← G+ ∪ {∇θtL(b+)} . Add positive data point
G− ← G− ∪ {∇θtL(b−)} . Add negative data point

end while
Train a binary classifier fprop distinguishing inputs from G+

and G−

At inference time, the adversary’s classifier requires gradient
updates (as computed locally by clients), and not model up-
dates. Similarly to the scenario described above, the adversary
can observe gradient updates by eavesdropping on the server,
on a client, or on the communication between these.

Additionally, an adversary that observes client k’s sent
gradient update gkt and received sequential model updates θt
and θt+1 can also recover the aggregated gradients of all other
clients, by computing θt−θt+1−ηgkt = η

∑
i 6=k g

i
t. For K = 2

clients, the adversary is able to fully recover the gradients of
the other client.

C. Countermeasures

Several countermeasures have been proposed to mitigate
property inference attacks. A family of countermeasures tries
to share fewer gradients or make them sparser (e.g., using
selective gradient sharing, reducing dimensionality, inserting
a dropout layer during training, etc.), but these are reported to
only moderately impact the success of an adversary [2].

Participant-level differential privacy has also been proposed
to train collaborative learning models [8], but this requires a
very large number of clients, and the joint model does not
converge for a small number of clients [2].

Finally, secure multi-party computation coupled with ho-
momorphic encryption has been proposed to allow clients to
perform all training operations on encrypted data [9]. This
approach is very computation and communication-expensive,
and clients incur heavy setup costs.

However, none of these countermeasures address the intrin-
sic similarity between source and target tasks directly. Pre-
venting property inference from feature representation requires
that features learned for the source and target tasks are clearly
separable and separated during training.

IV. DATASET AND MODEL ARCHITECTURES

A. Dataset

For our experiments, we use the Annotated Labelled Faces
in the Wild (LFWA+) dataset [10].

This dataset contains 13 143 RGB pictures of faces (cropped
and downsampled to 75 × 50 pixels), annotated with binary
labels for 44 attributes (e.g., MALE, BLONDHAIR, EYE-
GLASSES). Some of these 44 attributes are highly correlated

(e.g., WEARINGLIPSTICK and WEARINGEARRINGS have
a high positive correlation, while WEARINGLIPSTICK and
MALE have a high negative correlation), and some attributes
are uncorrelated (e.g., PALESKIN and OVALFACE). This high
number of attributes and their variety allows us to explore
relationships between tasks in detail.

B. Model Architectures

We experiment with two model architectures (ConvNet and
SqueezeNet), which we use independently of the task.

ConvNet is a simple convolutional architecture used in [2]
for the LFWA+ dataset, totalling 1 million parameters.

ConvNet is composed of three spatial convolutional layers
with 32, 64, and 128 filters, respectively. All convolutional
layers use a 3 × 3 kernel and a stride of 1, and are followed
by a max-pooling layer with pool size 2. These layers are
then followed by two fully-connected layers of size 256 and
1, and a sigmoid is applied to the output to yield a probability
prediction. We use rectified linear units (ReLU) as non-
linearities for all layers. Biases are initialized to 0, and weights
are initialized randomly using He’s normal initialization [11].

SqueezeNet is a smaller convolutional network (with around
723 000 parameters) introduced in [12] (we use version 1.1).
SqueezeNet was designed to match the performance of other
state-of-the-art models with a much smaller model size. This
makes it an attractive architecture for collaborative learning,
as the sizes of model updates sent to the server are reduced.
However, this reduction in the number of parameters makes
SqueezeNet harder to train, and more care has to be taken
when choosing hyperparameters.

SqueezeNet uses convolutional and fully-connected layers,
all followed by ReLUs. Max-pooling is applied after interme-
diate layers, whereas the last layer applies average-pooling.
SqueezeNet also applies a dropout layer before the final layer.
Biases are initialized to 0, the weights for the last layer are
normally distributed and uniformly distributed for all others.

V. MANY-TARGETS PROPERTY INFERENCE ATTACKS

Building on [2], we reproduce batch property inference
attacks on a much wider set of target attributes, and using
two different model architectures. This allows us to uncover
patterns in the adversary’s success, depending on the source
and target tasks, and across model architectures.

A. Setup

1) Collaborative Learning: To train our models, we use the
synchronized SGD algorithm introduced in Section II-B with
K = 2 clients.

The LFWA+ dataset is split at random into an auxiliary
dataset (20% of inputs) which is not used during training,
the remaining 80% being split evenly between the clients.
Our source task is binary classification for 5 chosen attributes
(BLACK, BLOND HAIR, MALE, SMILING, YOUNG). These
5 source attributes were chosen because they have different
correlation patterns with all the other attributes. For each
source task, we train an adversary for all 44 target tasks.
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For each source and target, we repeat our experiments 4
times for ConvNet, and 6 times for SqueezeNet. Both model
architecture are trained for 30 epochs, using a batch size of
32. We use the following hyperparameters:
• ConvNet: we use the binary cross-entropy loss, and use

SGD with learning rate 0.1 (as in [2])
• SqueezeNet: we use a weighted binary cross-entropy loss

(where the loss term for positive samples is weighted by
the ratio of negative and positive samples), which helps
the model converge for very imbalanced classification
tasks. We use SGD with the hyperparameters recom-
mended in [12]: weight decay = 0.0002, momentum =
0.9, and a linearly decreasing learning rate starting at
0.04.

2) Adversaries: We perform single-batch property infer-
ence as introduced by [2]; in this setting, either all images
in a given batch have the target property, or none do. We
ensure that the model is trained with the same number of
batches with and without the property, in order to simplify our
analysis across all tasks. This is a simplified attack scenario,
but the adversary performance is only weakly impacted when
the fraction of inputs with the property in a batch decreases
[2].

The adversary first performs a max-pool with pool size 4
on the gradients it observes, as a simple feature reduction
mechanism. For our batch property classifier, we use a random
forest with 50 trees (reported in [2] to work best), which can
be trained very efficiently, even for a very high number of
features.

We also experimented with using a convolutional neural
network as a batch property classifier, but this proved very
inefficient and slow to converge. Such an approach would
require a more drastic and clever feature selection to work
well, which we did not investigate further.

To quantify the inference power of the adversary, we use
the area under receiver operating characteristic curve (AU-
ROC). In our setup of equal proportion between batches with
and without the property (a perfectly balanced classification
problem), the baseline AUROC is 0.5.

This motivates our definition of a privacy loss measure,
defined as |AUROC−0.5|

0.5 . The privacy loss is 0 for a given
source and target task if the adversary is not able to perform
better than random guessing, and is 1 if the adversary is able
to perfectly differentiate between batches with and without the
property.

B. Results

We first ensure that our source models converge and perform
well on the source tasks. With our training setup, we achieve
very good performance for the source ConvNet models (test
AUROCs ranging from 0.78 to 0.97, with a median of 0.93),
which implies that the joint model is able to learn meaningful
features. For the SqueezeNet architecture, the model has
difficulties to fit the data in some runs, and is generally less
performant than ConvNet (test AUROCs ranging from 0.5 to
0.95, with a median of 0.83). In particular, the source attributes

BLACK and BLONDHAIR proved especially difficult to train.
For these two source attributes, the source model is sometimes
not able to learn meaningful features for the source task, and
it is likely that the model will not learn meaningful features
for other tasks, decreasing the adversary’s inference power.

1) Privacy Losses: We show the mean privacy loss for our
sources and targets in Fig. 1. We observe that the privacy
loss is not uniform: for a given source, the privacy loss
varied depending on the target (e.g., for a network trained
on the source SMILING, the privacy loss is around 0.9 for
the target HIGHCHEEKBONES, but less than 0.1 for the target
CHUBBY). The privacy loss for a given target can also vary
depending on the source: for example, the privacy loss for
target ATTRACTIVE varies between 0.2 and 0.8 (for ConvNet),
depending on the source.

We also observe that the same patterns in the privacy loss
emerge across models, which hints at an intrinsic relation
between source, target, and privacy loss, independently of the
specific model.

2) Privacy Loss and Correlation: As mentioned in III-B,
the adversary is able to infer feature values from the gradients.
Since these features have been learned to encode information
useful for the source task, the adversary should be able to
perform well when the target and the source task are identical.
Indeed, our adversary achieves a privacy loss of 1 in this case,
as can be seen in Figure 1.

The adversary will also be able to perform well if the source
and target are highly correlated: it can simply use the source
features (which it can read out easily from the gradients)
to decide whether a batch has the target property with high
probability. Figure 2 shows the privacy loss plotted against the
absolute correlation between the source and targets (in blue
dots), for each of our five sources. Our experiments confirm
that the adversary achieves a higher privacy loss when the
source and target are more correlated.

As an improved baseline for privacy loss, we consider an
adversary that trains their classifier to detect batches with the
source property, and decides that the batch has the target prop-
erty with probability p, where p is the conditional probability
that an image has the target property given that it has/does
not have the source property, computed over the adversary’s
auxiliary dataset. Algorithm 3 shows such a baseline classifier.

Algorithm 3 Baseline Batch Property Classifier

Input: Adversary’s auxiliary dataset Dadv, gradient update g,
source S, target T

Output: Prediction on whether g has property T
Get a batch property classifier fS for the target S
Get prediction pS ← fS(g)
p← PX∼Dadv [X has T |X has S] · pS

+PX∼Dadv [X has T |¬(X has S)] · (1− pS)
Return prediction p

In our setup, this baseline adversary is only able to achieve a
moderately high privacy loss if the auxiliary data is distributed
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Fig. 1: Privacy loss for the selected source and target attributes, for the ConvNet (top) and SqueezeNet (bottom) architectures.

Fig. 2: Privacy loss on ConvNet vs absolute correlation between source and target attributes, using our adversary (blue dots)
and using a correlation-based predictor baseline (orange triangles). Targets with low (< 0.1) correlation to the source attribute
are shown on a white background. Points where the source and target are identical (where privacy loss and correlation are
both 1) are omitted. The lines show a fitted linear regression.

similarly to the clients’ training data, and if the source has a
relatively balanced distribution, as otherwise the probability of
seeing a batch with mostly inputs with/without the property
will be low, and the baseline will essentially behave as a zero-
rate classifier, achieving a privacy loss of 0. In particular, this
behaviour occurs for targets BLACK and BLONDHAIR.

For ConvNet, we show the privacy loss for this baseline
using orange triangles in Figure 2. We observe that for all
targets (regardless of correlation with the source), the privacy
loss of our adversary is still higher than a baseline adversary
that only exploits the data distribution: the adversary is able
to extract additional information from the gradients which
improves its guess.

For targets with low (< 0.1) absolute correlation, the privacy
loss is high, and also very variable, ranging for example from
0.15 to 0.9 for the source BLACK. This behaviour is consistent
across all sources and models.

Thus, we observe that correlation in the original data domain
is not enough to predict the privacy loss incurred by clients.
Which target attributes will be easiest to extract for the
adversary depends on the (non-linear) features that the source
model has extracted from the data. For a given task, our goal
is to anticipate upfront which target(s) will be most vulnerable
to property inference attacks. To answer this question, we turn
to task affinities computed using transfer learning.
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VI. TASKONOMIES - COMPUTING AFFINITIES WITH
TRANSFER LEARNING

A. Task Affinities

Algorithm 4 Task Affinities from Pairwise Comparisons

Input: Source S, targets T1, . . . , Tn, losses of transfer models
LS→Ti

(·)
Output: Affinities a1, . . . , an between S and T1, . . . , Tn

1: Construct intermediate comparison matrix W with entries
Wi,j = Ex∈Dtest [LS→Ti

(x) < LS→Tj
(x)]

2: Apply Laplace-smoothing by clipping W to [0.001, 0.999]
3: Construct reciprocal comparison matrix W ′ with entries
W ′i,j =

wi,j
wj,i

4: Get the principal eigenvector a of W ′

5: Normalize a to sum to 1

Zamir et al. proposed a method to uncover a taxonomy
of tasks (taskonomy), allowing to quantify how related two
tasks are [6]. In particular, they convert measurements of
performance in a transfer learning setup to an affinity measure
derived from the Analytical Hierarchy Process (AHP) [13].

We borrow and adapt this method to get an affinity measure
between source and target tasks.

For a given source S and targets T1, . . . , Tn, we first train a
model for S. Then, for each target Ti, we use the source model
to train another model for Ti using transfer learning. We use
the performance of the trained target models as an indicator
for the usefulness of the features of the pre-trained source
model for the target task. AHP then allows us to compute a
normalized and consistent affinity measure.

We show our adapted AHP method in Alg. 4: the only
difference is that we build one comparison matrix by source
instead of one per target, since we are interested in the in-
formation leakage from a given source to all potential targets,
while Zamir et al. are interested in the information from all
potential sources for a given target.

We also tried to use a variant of Alg. 4 using the test
accuracy to build comparison matrices, but this only yields
a coarser, less precise output that when using the loss

In our setup, all target tasks are binary classifications, and
the performance can be compared more easily than in [6],
where very different tasks are investigated. We take advantage
of this similarity to compute another affinity measure: by
building the reciprocal comparison matrices W ′ using the
AUROC of the transfer models (i.e., W ′i,j = AUROCi

AUROCj
), the

vector of stacked AUROCs is an eigenvector of W ′, and can
be used as an affinity measure.

In the following, we investigate how good loss-affinities and
transfer AUROCs can predict the privacy loss.

VII. PREDICTING THE PRIVACY LOSS WITH AFFINITIES

A. Setup

In order to compute the metrics needed for AHP, we train
the source models using the same hyperparameters as in V-A1.

(a) All targets, Affinity

Architecture Source Layer 2 Layer 3 Layer 4 Abs. Corr.

ConvNet

Black 0.60 0.70 0.56 0.23
Blond Hair 0.46 0.45 0.43 0.51
Male 0.35 0.40 0.52 0.73
Smiling 0.52 0.59 0.58 0.42
Young 0.61 0.60 0.58 0.49

SqueezeNet

Black 0.79 0.89 0.73 0.15
Blond Hair 0.61 0.65 0.49 0.65
Male 0.26 0.44 0.52 0.92
Smiling 0.25 0.64 0.73 0.89
Young 0.35 0.57 0.90 0.77

(b) All targets, Transfer AUROC

Architecture Source Layer 2 Layer 3 Layer 4 Abs. Corr.

ConvNet

Black 0.78 0.81 0.82 0.23
Blond Hair 0.65 0.62 0.72 0.51
Male 0.53 0.63 0.77 0.73
Smiling 0.77 0.84 0.84 0.42
Young 0.66 0.66 0.73 0.49

SqueezeNet

Black 0.86 0.86 0.73 0.15
Blond Hair 0.85 0.91 0.88 0.65
Male 0.29 0.71 0.95 0.92
Smiling 0.22 0.65 0.93 0.89
Young 0.50 0.77 0.88 0.77

TABLE I: Spearman correlation between the privacy loss and
the task affinity (Ia), respectively transfer AUROC (Ib), for
all targets. For each architecture and source, the maximum is
shown in bold. The right-most column shows the Spearman
correlation between the privacy loss and the absolute source-
target correlation.

For each intermediary layer l, we train a target model for
10 epochs (using the same hyperparameters), initialized by
copying layers 1 to l, and randomly setting layers l+1 onward.

We split our full dataset into training, validation, and test
sets. The source models are trained on the training data, while
the transfer models are trained on a subset of the validation
data. The test set is used to produce the metrics needed to
compute affinities.

B. Results

We show the Spearman correlation between the privacy loss
and the affinity or transfer AUROC in Tables I (all targets) and
II (targets with low correlation). We find that both task affinity
and transfer AUROC are good predictors for the privacy loss,
across both models.

For both models, the transfer AUROC is a better predictor
of privacy loss than the task affinity computed using the loss,
regardless of the correlation between source and targets (e.g.,
compare Tables Ia and Ib). This can also be seen in Figure 3,
where we visualize the privacy loss, the loss-affinity, and the
transfer AUROC side-by-side for ConvNet.

Additionally, both the transfer AUROC and the loss-affinity
are better predictors than the absolute correlation between
source and target. This can be observed not only in the low-
correlation domain (where source-target correlation is not a
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Fig. 3: Privacy loss (top), affinity distance (middle) and transfer AUROC (bottom), for the ConvNet architecture, with affinities
computed using the second-to-last (first fully-connected) layer. For visualization, we convert the loss-affinity into a distance
measure using the standard transformation dist = exp(−B · aff) with B = 100. Darker cells indicate a higher affinity between
source and target.

(a) Targets with low correlation, Affinity

Architecture Source Layer 2 Layer 3 Layer 4 Abs. Corr.

ConvNet

Black 0.75 0.79 0.67 0.01
Blond Hair 0.57 0.57 0.56 0.15
Male 0.22 0.22 0.04 0.18
Smiling 0.61 0.62 0.50 0.28
Young 0.44 0.46 0.22 -0.32

SqueezeNet

Black 0.85 0.89 0.67 -0.11
Blond Hair 0.27 0.25 -0.18 0.01
Male 0.16 0.04 -0.55 0.34
Smiling 0.03 0.25 0.47 0.73
Young -0.05 -0.28 0.84 0.07

(b) Targets with low correlation, Transfer AUROC

Architecture Source Layer 2 Layer 3 Layer 4 Abs. Corr.

ConvNet

Black 0.84 0.85 0.83 0.01
Blond Hair 0.72 0.70 0.53 0.15
Male 0.79 0.79 0.77 0.18
Smiling 0.92 0.93 0.80 0.28
Young 0.86 0.86 0.73 -0.32

SqueezeNet

Black 0.89 0.86 0.66 -0.11
Blond Hair 0.90 0.92 0.69 0.01
Male 0.74 0.85 0.69 0.34
Smiling 0.07 0.21 0.73 0.73
Young 0.31 0.52 0.68 0.07

TABLE II: Spearman correlation between the privacy loss and
the task distance (IIa), respectively transfer AUROC (IIb), for
targets with low (< 0.1) correlation to the source task. For
each architecture and source, the maximum is shown in bold.

good predictor, as shown in Section V-B2, but also when
considering all possible targets.

For ConvNet, both transfer AUROC and task distance
perform equally well when considering all targets and when
only considering targets with low correlation to source, or even
slightly better.

SqueezeNet proves even more difficult to tune for transfer
learning and does not always yield meaningful transfer met-
rics (especially for sources BLACK and BLONDHAIR). For
SqueezeNet, both transfer AUROC and task distance are worse
predictors in the low-correlation regime: in general, affinities
and transfer AUROC are harder to obtain for SqueezeNet,
since we do not tune the hyperparameters for each source,
which results in subpar performance of the transfer networks.

Thus, for models that are suitable for transfer learning, there
is a high correlation between task affinity and privacy loss.
This affinity measure allows us to partially explain the variance
in privacy loss for low correlation attributes. This also applies
to higher layers, which are known to learn more task-specific
features [14], and could thus be considered less useful to infer
target tasks unrelated to the source task.

VIII. REVISITING ATTACKS

For some targets, the affinity for one layer l is much higher
than for the others. For such targets, we re-run the adversary,
but only allow it to observe the gradients at layer l. Since
this drastically reduces the number of features available to the
adversary, we drop the max-pool pre-processing step over the
gradients, but otherwise continue as in V-A2. The intuition
behind this experiment is that if affinities are good predictors
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of privacy loss, an adversary observing gradients only on the
layer with the highest affinity should incur only a small penalty
in its inference power.

Figure 4 shows the absolute change in the privacy loss for
an adversary in this reduced setup, for each source, and plotted
by the layer with the highest affinity.

Fig. 4: Absolute change in the privacy loss for an adversary
observing updates only at the layer with the highest affinity.

We observe that even if the adversary incurs severe penalties
to its inference power in some cases (especially for earlier
layers 2 and 3), the change in privacy loss is centered around
0 for all sources, i.e., nearly all the privacy leakage comes from
this layer. This further shows that affinity is a good predictor
of privacy loss.

IX. LIMITATIONS AND FUTURE WORK

We first present the limitations of the property inference
attacks used in this project, before examining the limitations
of our method to predict privacy loss.

A. Attacks

We summarize limitations of the property inference attacks
used in this project, and refer to [2] for a more in-depth
discussion.

Our property inference adversary assumes that the adversary
has access to a labelled auxiliary dataset. While such datasets
exist and are publicly available for generic properties, infer-
ence attacks on more exotic properties or data would require
more work by the adversary to get such an auxiliary dataset,
significantly raising the cost of an attack.

Additionally, increasing the number of participants involved
during collaborative training significantly reduces the perfor-
mance of the adversary. Increasing the batch size and the
proportion of inputs with the property within batches also
affects the adversary’s performance, albeit less drastically.

B. Predicting privacy loss

Our attacks are carried out using a concrete classifier, and
thus only provide a lower bound on the privacy loss, as much
more effective adversaries might exist. For a given source,
we can thus only predict which target properties are likely
to be leaked, but not which targets are safe. To make such
a statement, a theoretical analysis independent of a concrete
adversary classifier would likely be necessary.

While property inference attacks have been run on text
[2] and tabular data [1], we only evaluate our attacks on

one dataset consisting of images. Deep learning and transfer
learning have also been successfully applied to these other
types of data (e.g., language models and classifiers for text),
and could thus also be used to compute affinity measures for
such tasks and datasets. Other tasks on visual datasets (e.g.
segmentation, face recognition) could also be investigated.

Our experiments dealt with two different machine learning
models to control the effect of the network architecture on the
results. Even if both ConvNet and SqueezeNet have different
layers and layer connections, both are still CNNs. Future work
could investigate if our findings carry over to models with
radically different architectures, e.g., VGG [15], or models
with attention [16].

X. CONCLUSION

In this semester project, we have implemented a collabo-
rative learning setup, on which we have performed property
inference attacks for a wide range of target tasks. We have
shown that our adversary is able to successfully exploit fea-
tures learned on a source task for other tasks, achieving a
higher privacy loss than an adversary that solely exploits the
distribution of target labels. The variance of the privacy loss is
also quite high for targets that are uncorrelated to the source.

We then used a variant of the analytical hierarchy process to
derive affinity measures between tasks from transfer learning
scores, and show that they are good predictors of the privacy
loss, especially for uncorrelated source and target tasks.

Finally, we explore the limitations of our approach and
propose directions for future work.
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