A Privacy-Preserving Aid Distribution System with Assessment Capabilities Or, a Case Study on Threat Modelling and System Design

Christian Knabenhans EPFL

Based on joint work with Lucy Qin Georgetown U.

Carmela Troncoso EPFL+MPI-SP
Justinas Sukaitis ICRC
Vincent Graf Narbel ICRC

in collaboration with

Digitalizing humanitarian action is risky

Identification System (IDENT) (soon to be replaced by

electronic transmission of data between UNHCR and

Cybersecurity

Disasters

Privacy-preserving aid distribution

Anonymous credentials +blocklists +biometrics

Not Yet Another Digital ID: Privacy-Preserving Humanitarian Aid Distribution

Boya Wang*, Wouter Lueks†, Justinas Sukaitis‡, Vincent Graf Narbel‡, Carmela Troncoso* EPFL, Lausar

.carmela.tronce

Information S lueks@cispa.de ee of the Red C kaitis, vgraf \@ic

requ

We

cons

Our

bring

large

r-based

olutions amount

idanger

a with

TEE / FHE

More anonymous credentials

Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution

Kasra EdalatNejad*, Wouter Lueks†, Justinas Sukaitis‡, Vincent Graf Narbel‡ Massimo Marelli[‡], Carmela Troncoso* *SPRING Lab, EPFL, Lausanne, Switzerland {kasra.edalat, carmela.troncoso}@epfl.ch †CISPA Helmholtz Center for Information Security, Saarbrücken, Germany lueks@cispa.de

[‡]International Committee of the Red Cross, Geneva, Switzerland

A Low-Cost Privacy-Preserving Digital Wallet for Humanitarian Aid Distribution

Eva Luvison*, Sylvain Chatel*, Justinas Sukaitis[†], Vincent Graf Narbel[†], Carmela Troncoso[‡], Wouter Lueks* *CISPA Helmholtz Center for Information Security, Saarbrücken, Germany {eva.luvison, sylvain.chatel, lueks}@cispa.de †International Committee of the Red Cross, Geneva, Switzerland dpo@icrc.org [‡] SPRING Lab, EPFL, Laussanne, Switzerland

carmela.troncoso@epfl.ch

Abstract—Humanitarian organizations distribute aid to people affected by armed conflicts or natural disasters. Digitalization has the potential to increase the efficiency and fairness of

requiring multiple household members to be able to access a shared amount of aid. Second, solutions must often be lowtech: recipients cannot always be assumed to have high-

Privacy-preserving aid distribution is great, but needs assessments

"Optimal privacy is nice...

But also, we need to know whether our distribution

- was successful
- reached the right targets
- does not discriminate"

Real-world systems need assessments

Not an isolated case! Real-world deployments need assessments

Correctness debugging fully opaque systems is hard

Transparency towards users, donors, legislators

Planning to optimize or rectify deployments

Gathering requirements efficiently and from first principles

Gathering requirements

Gathering requirements Asking the right questions

What do you want?

What do you need?

Everything! (and post-quantum please)

Exactly what we have now, but digital and "private"

Gathering requirements Asking the right questions

How do you do things?

Functionality

find out what information they actually

need to do their job

Creativity

cryptography is unintuitive to

non-cryptographers

Boundaries

we're only designing a small part of a

broader system; delineate where there

should be a human-in-the-loop

Privacy regulations

What's your threat model?

Hunger, sickness

Fact: people are bad at threat modelling (see: next two days of talks)

ICRC

Data Protection Office

1. Who might interact with the system?

recipient other recipients

auditors
nation-state

headquarters
non-state militia

other NGOs ISP

2. What information might the system need?

biometrics household_size

registration_date is_pregnant

link_registration_distribution

entitlement ethnic_group

3. What concrete harm may happen if *info* is available to *party*?

Everything we deploy comes with some risk

Fundamental leakage, regardless of instantiation

Risk analysis: do we want to deploy this?

No need to protect *info*, since it will leak anyway

Fundamental information leakage

→ Fundamental risk of harm

Other leakage

→ crypto / privacy-enhancing technologies!

Requirements

Functional requirements

Deployment requirements Computation

Deployment requirements Connectivity

Deployment requirements Efficiency

Security requirements

Assessment unforgeability

Statistics reflect accurate distribution situation

Assessment privacy

Output parties only learn the intended statistics output

Meta-requirements

Agility

Threat model may be suddenly invalidated, but we might not want to deploy the strongest threat model to maximize utility

→ Need to be able to deploy strengthened protocol or safely shutdown rapidly and seamlessly

Graceful degradation

When threat model is invalidated, the system should not catastrophically collapse, but fail with minimum harm.

→ For each protocol, derive harm for all stronger threat models

Privacy-preserving humanitarian aid distribution with assessment capabilities

Adding assessments

Starting point: Functional Encryption (FE)

Attack: adversary invokes FE different subsets of inputs

Solution:

- semi-honest: one-time functional encryption
- malicious: bind crypto material to physical inventory, use predicate one-time functional encryption

Instantiation: PKE + signatures + {2PC, threshold HE}

A Privacy-Preserving Aid Distribution System with Assessment Capabilities Or, a Case Study on Threat Modelling and System Design

Christian Knabenhans EPFL Based on joint work with

Carmela Troncoso EPFL+MPI-SP Lucy Qin Georgetown U. Justinas Sukaitis ICRC Vincent Graf Narbel ICRC Thanks to

Boya Wang EPFL+MPI-SP

Mathilde Raynal EPFL

Theresa Stadler EPFL

Saiid El Hajj Chehade EPFL

Zayd Maradni MPI-SP

Wouter Lueks CISPA

Sylvain Chatel CISPA

and many more...