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In 2-party setting, adversary has 
potentially malicious inputs: 

• Correctness no longer a 
meaningful property to prove 

• Decrypting server output is a 
privacy risk for the client

• Server could return different   
results for different queries

• Server may not expend work

→ We formulate 3 desirable 
properties for FHE deployments

Where are current integrity primitives for FHE lacking?

→ Lack in expressivity and/or efficiency

Why is integrity protection for FHE challenging?
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Approach Expressivity Efficiency
Concrete
Overhead

ZK Implemented

Veritas [CKPH22] ●●● ●●● ×1.5 - ×50  

Proofs over Fields [Gro16] ●●● ●○○ ×104 - ×105  

Hom. Hashing [BCFK21] ●○○ ●○○ ?  

Rinocchio [GNS21] ●●○ ●○○ ?  Ongoing
Trusted Execution 
Environments ●●● ●●● ×4 - ×20  

Fully Homomorphic Encryption (FHE) enables computation on encrypted 
data, while preserving the privacy of inputs and outputs

FHE is malleable by construction:

• Loss of correctness in applications with a malicious server. 

• Loss of privacy (e.g., through key recovery attacks) for a malicious server 
with access to some decryption oracle.

• Real-world FHE deployments are inherently at risk of exposing 
decryption oracles

1 Motivation 3 Integrity Properties for Real-World FHE Use-Cases

2 State-of-the-Art Integrity Primitives for FHE

Main goal of current primitives: Server output is exactly the evaluation of 
the public function f over the client’s input

Client-Server interaction does not leak the client’s private inputs
→ Requires protection against key-recovery attacks and resilience in the 
face of decryption oracles

More useful integrity primitives, which are more:

• efficient (e.g., leveraging hardware acceleration)
• expressive (with native support for FHE)
• composable with other proof systems

4 Future Directions for FHE Integrity

Ciphertext expansion 
(hinders efficiency)

Non-arithmetic FHE ops
(ciphertext maintenance)

FHE plain/cipherspaces
(rings, not fields)
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Key recovery protection requires an IND-CCA1 (Non-adaptive Indistinguishability 
against Chosen-Ciphertext Attacks) FHE scheme

In real-world settings, the adversary is adaptive, which can be thwarted by 
consistency



Client gets proof that circuit code was 
executed correctly

?

Proof system needs to be efficiently 
composable with a commitment 

scheme for FHE



Wrapper code checks that inputs 
match the server’s committed values

? ?

 

Why is correctness alone not sufficient?

• Correctness has been the primary focus for FHE integrity

• Outsourcing is very often costlier than computing locally on plaintexts
→ FHE is mostly worthwile in multi-party settings
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= f(      )x Being malicious is at least as expensive as being honest 
→ Incentive to correctness for malicious-but-rational adversary

Property 3: Proof-of-Effort ≠ 0

Server always uses the same inputs for multiple client queries
→ Implies determinism, fairness, and non-adaptivity

Property 2: Consistency =       = … =  .    

Dec( tk) ↛ .ZProperty 1: Privacy Protection
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