
pps-lab.com

In 2-party setting, adversary has
potentially malicious inputs:

• Correctness no longer a
meaningful property to prove

• Decrypting server output is a
privacy risk for the client

• Server could return different
results for different queries

• Server may not expend work

→ We formulate 3 desirable
properties for FHE deployments

Where are current integrity primitives for FHE lacking?

→ Lack in expressivity and/or efficiency

Why is integrity protection for FHE challenging?

Integrity Protection Challenges for Real-World FHE
Christian Knabenhans, Alexander Viand, Anwar Hithnawi

[Gro16] J. Groth, “On the Size of Pairing-Based Non-interactive Arguments”, in Advances in Cryptology – EUROCRYPT 2016
[BCFK21] A. Bois, I. Cascudo, D. Fiore, and D. Kim, “Flexible and Efficient Verifiable Computation on Encrypted Data”, in Public Key Cryptography – PKC 2021

Approach Expressivity Efficiency
Concrete
Overhead

ZK Implemented

Veritas [CKPH22] ●●● ●●● ×1.5 - ×50  

Proofs over Fields [Gro16] ●●● ●○○ ×104 - ×105  

Hom. Hashing [BCFK21] ●○○ ●○○ ?  

Rinocchio [GNS21] ●●○ ●○○ ?  Ongoing
Trusted Execution
Environments ●●● ●●● ×4 - ×20  

Fully Homomorphic Encryption (FHE) enables computation on encrypted
data, while preserving the privacy of inputs and outputs

FHE is malleable by construction:

• Loss of correctness in applications with a malicious server.

• Loss of privacy (e.g., through key recovery attacks) for a malicious server
with access to some decryption oracle.

• Real-world FHE deployments are inherently at risk of exposing
decryption oracles

1 Motivation 3 Integrity Properties for Real-World FHE Use-Cases

2 State-of-the-Art Integrity Primitives for FHE

Main goal of current primitives: Server output is exactly the evaluation of
the public function f over the client’s input

Client-Server interaction does not leak the client’s private inputs
→ Requires protection against key-recovery attacks and resilience in the
face of decryption oracles

More useful integrity primitives, which are more:

• efficient (e.g., leveraging hardware acceleration)
• expressive (with native support for FHE)
• composable with other proof systems

4 Future Directions for FHE Integrity

Ciphertext expansion
(hinders efficiency)

Non-arithmetic FHE ops
(ciphertext maintenance)

FHE plain/cipherspaces
(rings, not fields)

[CKPH22] S. Chatel, C. Knabenhans, A. Pyrgelis, and J.-P. Hubaux, “Verifiable Encodings for Secure Homomorphic Analytics”, arxiv.org/abs/2207.14071
[GNS21] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez, “Rinocchio: SNARKs for Ring Arithmetic”, eprint.iacr.org/2021/322

Correctness

X ZEvalf

Enc Dec

fx

Client Server

X

Enc

Oracle

x

Evalf

Z

Dec



Adversary can choose inputs s.t.
circuit is satisfied, but has not been

executed

MAC

TEE

Key recovery protection requires an IND-CCA1 (Non-adaptive Indistinguishability
against Chosen-Ciphertext Attacks) FHE scheme

In real-world settings, the adversary is adaptive, which can be thwarted by
consistency



Client gets proof that circuit code was
executed correctly

?

Proof system needs to be efficiently
composable with a commitment

scheme for FHE



Wrapper code checks that inputs
match the server’s committed values

? ?

 

Why is correctness alone not sufficient?

• Correctness has been the primary focus for FHE integrity

• Outsourcing is very often costlier than computing locally on plaintexts
→ FHE is mostly worthwile in multi-party settings

π TEE

π TEE

TEEπ

TEE

= f()x Being malicious is at least as expensive as being honest
→ Incentive to correctness for malicious-but-rational adversary

Property 3: Proof-of-Effort ≠ 0

Server always uses the same inputs for multiple client queries
→ Implies determinism, fairness, and non-adaptivity

Property 2: Consistency = = … = .

Dec(tk) ↛ .ZProperty 1: Privacy Protection

π

MAC π

z

y

y

z

x

y1 y2 yn

y

mailto:knabenhc@ethz.ch
https://arxiv.org/abs/2207.14071
https://eprint.iacr.org/2021/322

	Foliennummer 1

