
vFHE: Verifiable Fully Homomorphic Encryption
Christian Knabenhans

EPFL
Lausanne, Switzerland

christian.knabenhans@epfl.ch

Alexander Viand
Intel Labs

Zurich, Switzerland
alexander.viand@intel.com

Antonio Merino-Gallardo
ETH Zurich

Zurich, Switzerland
antonio@m-g.es

Anwar Hithnawi
University of Toronto

Toronto, Canada
anwar.hithnawi@cs.toronto.edu

Abstract
Fully Homomorphic Encryption (FHE) is a powerful building block
for secure and private applications. However, state-of-the-art FHE
schemes do not offer any integrity guarantees, which can lead to
devastating correctness and security issues when FHE is deployed
in non-trivial settings. In this paper, we take a critical look at exist-
ing integrity solutions for FHE, and analyze their (often implicit)
threat models, efficiency, and adequacy with real-world FHE de-
ployments. We explore challenges of what we believe is the most
flexible and promising integrity solution for FHE: namely, zero-
knowledge Succinct Non-interactive ARguments of Knowledge
(zkSNARKs); we showcase optimizations for both general-purpose
zkSNARKs and zkSNARKs designed for FHE. We then present two
software frameworks, circomlib-FHE and zkOpenFHE, which allow
practitioners to automatically augment existing FHE pipelines with
integrity guarantees. Finally, we leverage our tools to evaluate and
compare different approaches to FHE integrity, and discuss open
problems that stand in the way of a widespread deployment of FHE
in real-world applications.

CCS Concepts
• Security and privacy → Cryptography; Management and
querying of encrypted data.

Keywords
FHE Integrity; Zero-Knowledge Proofs; OpenFHE

ACM Reference Format:
Christian Knabenhans , Alexander Viand , Antonio Merino-Gallardo ,
and Anwar Hithnawi . 2024. vFHE: Verifiable Fully Homomorphic En-
cryption. In Proceedings of the 12th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography (WAHC ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3689945.3694806

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1241-8/24/10
https://doi.org/10.1145/3689945.3694806

1 Introduction
In recent years, there has been an increased interest in applying
secure computation techniques to both strengthen security and
privacy guarantees of existing applications, and to unlock the ben-
efits of previously inaccessible data. In the last few years, Fully
Homomorphic Encryption (FHE) has undergone several leaps in
performance that make it a compelling solution for a variety of
secure computation applications. Cryptographic and algorithmic
improvements in the last decade have given us mature and efficient
schemes, and an improved understanding of how to apply them has
led to a significant reduction of the overhead FHE introduces [70].
For example, in the span of two years, the community improved the
runtime for encrypted inference of simple models from 300 seconds
to 0.03 seconds [39, 43, 61]. An improved understanding of how to
exploit existing hardware (e.g., GPUs, TPUs, and FPGAs) and the
development of custom FHE accelerators [9, 24, 35, 65–67] promises
to reduce wall-clock times even further. As a result, there has been
a shift from demonstrating proof-of-concept applications to focus-
ing on solving real-world problems [42, 73] and we have seen a
first wave of real-world deployments of FHE-based applications
emerge. For example, Microsoft’s Edge browser includes an FHE-
based password monitoring system [50], the Korean government
piloted an FHE-based contact tracing application [1], and Apple
recently introduced FHE-based Live Caller ID Lookup for iOS [2, 3].

As FHE matures and interest in deploying it in production in-
creases, challenges in development and deployment are now rising
to the forefront. There have been significant efforts dedicated to low-
ering the barrier of entry to FHE development [40, 69, 74], putting
the development of efficient FHE applications within reach of a
much larger audience. These works, however, have so far mostly ig-
nored the fundamental challenges that arise when trying to realize
secure-computation–based applications in practice: cryptographic
considerations now need to be interleaved with the application,
rather than occurring at a clearly defined edge. Naturally, this
requires augmenting policies and infrastructures for, e.g., key dis-
tribution and management to support these new application flows.
However, it also raises more fundamental issues, as we need to con-
tend with the challenges of deploying FHE in complex real-world
settings that frequently violate the basic assumptions underlying
most proposed FHE applications.

The vast majority of existing works on FHE ignore the issue of
integrity, instead relying on the semi-honest server assumption,

 

11

https://orcid.org/0000-0003-4645-7295
https://orcid.org/0000-0003-4645-7295
https://orcid.org/0000-0001-5452-1432
https://orcid.org/0000-0001-5452-1432
https://orcid.org/0009-0001-3766-2476
https://orcid.org/0009-0001-3766-2476
https://orcid.org/0009-0000-5603-1031
https://orcid.org/0009-0000-5603-1031
https://orcid.org/0000-0003-4645-7295
https://orcid.org/0000-0001-5452-1432
https://orcid.org/0009-0001-3766-2476
https://orcid.org/0009-0000-5603-1031
https://doi.org/10.1145/3689945.3694806
https://doi.org/10.1145/3689945.3694806
https://doi.org/10.1145/3689945.3694806
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689945.3694806&domain=pdf&date_stamp=2024-11-19


WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo & Anwar Hithnawi

i.e., that the server will not deviate from the expected computa-
tion. However, many application scenarios demand more robust
integrity guarantees due to the sensitivity of the data and com-
putation involved. Beyond mere correctness concerns, the lack of
integrity in FHE (which is a natural consequence of the inherent
malleability of FHE ciphertexts) can also completely invalidate the
confidentiality guarantees of FHE in the presence of an active ad-
versary that might deviate from the protocol in an arbitrary and
potentially malicious way [14, 17, 20, 29, 75]. For example, an active
adversary can frequently recover the client’s secret key and use it
to decrypt all ciphertexts stored on the server, even those not used
in the current computation. Since FHE, by its nature, is generally
deployed in scenarios where additional data protection is critical,
the potential for this protection to be suddenly negated presents a
real challenge for real-world deployments. While the semi-honesty
assumption can be reasonable when well supported by, e.g., legal,
contractual, or reputational considerations, it clearly should not be
relied upon universally. Therefore, in order to broaden the scope of
applications for which FHE can be deployed, we need to consider
robust FHE that is secure both against accidental corruptions and
actively malicious adversaries.

Guaranteeing integrity for FHE, and specifically the correctness
of the homomorphic computation, is key to achieving malicious
security for FHE, as attacks on confidentiality generally require
the ability to craft malicious ciphertexts. While, for some appli-
cations, this can be accomplished purely through verifying the
encryption process, the vast majority of scenarios also require guar-
antees over the homomorphic computation itself. Note, that correct
computation by itself is not technically sufficient in the malicious
security setting, but, in practice, integrity mechanisms designed to
achieve correctness can easily be extended to provide more general
guarantees. Integrity mechanisms for homomorphic computations,
however, are an inherently challenging issue, as such mechanisms
(e.g., MACs, signatures, etc) generally prevent all kinds of ciphertext
malleability, whereas FHE is defined by, and invariably requires, se-
mantically meaningful ciphertext malleability. While similar issues
arise in the context of maliciously-secure Multi-Party Computa-
tion (MPC), where they have been studied extensively [28], most
techniques do not transfer to the FHE setting since they rely on the
interactive nature of MPC (e.g., cut-and-choose protocols).

A number of works have studied the issue of integrity and/or
maliciously secure FHE. For example, there has been a long series of
works on IND − CCA1 secure FHE [7, 26, 27, 49, 53, 55, 68, 71], i.e.,
schemes that achieve indistinguishability against chosen ciphertext
attacks (IND − CCA1). Unfortunately, many of these constructions
assume the presence of cryptographic primitives even stronger than
FHE for which no practically efficient and secure instantiations are
known. A different line of research focuses purely on achieving
integrity for homomorphic computations; guaranteeing a function
was correctly executed on the ciphertext while preserving the con-
fidentiality of inputs [5, 11, 12, 31, 32, 34, 36, 38]. While these are
more concretely efficient than the constructions mentioned above,
there is a significant gap between the assumptions made by existing
work and the way state-of-the-art FHE schemes are used in practice.
In particular, existing schemes can only tolerate adversaries limited
to verification oracles, which are significantly weaker than the de-
cryption oracles that frequently arise in practice. As a result, these

approaches might fail to provide sufficient protection for real-world
deployment scenarios.

Contributions
Currently, we lack a systematic understanding of the extent to
which these approaches can be applied to common real-world de-
ployment scenarios of FHE, how feasible it is to implement them,
and the overhead that this incurs. In this paper, we provide a compre-
hensive analysis of existing techniques for FHE integrity. Towards
this, we study and classify deployment scenarios that have been
realized or are being proposed for FHE applications, and contrast
them with the traditional presentation of FHE in the literature. We
present a taxonomy of existing FHE integrity approaches, analyz-
ing the assumptions and guarantees they provide in the context of
complex deployment scenarios.

Based on our analysis of deployment scenarios and approaches,
we conduct an experimental study of the most promising integrity
techniques for FHE. In contrast to most experimental evaluations
in this space, we consider modern state-of-the-art FHE schemes
that offer vastly better performance but also introduce significant
cryptographic and algorithmic complexity. In order to achieve this,
we introduce two tools (circomlib-FHE [33] and zkOpenFHE [47]),
which automate and optimize the compilation from an FHE com-
putation to a lower-level SNARK arithmetization. We highlight
the issues that arise and introduce a series of optimizations that
make evaluating (e.g., SNARK-based) integrity techniques feasible
in the context of these real-world schemes. We discuss the issues
that arise when deploying FHE in real-world protocols, provide
guidance on the state of the art of real-world FHE beyond the semi-
honest setting, and identify remaining challenges and promising
directions for future research towards practical robust FHE.

2 Background
We briefly introduce Fully Homomorphic Encryption and Zero
Knowledge Proofs. We describe these concepts informally, high-
lighting properties and aspects relevant to our analysis, and refer to
the extended version of this paper [48] for more formal definitions.

FHE. Fully Homomorphic Encryption (FHE) allows arbitrary com-
putations to be performed on encrypted data. Modern FHE schemes
are based on the Learning with Errors (LWE) [64] or Ring Learn-
ing with Errors (RLWE) [57] hardness assumptions. In this setting,
carefully calibrated noise is added to the encryption. This noise
grows during computation, and once it crosses a certain threshold,
decryptionwill no longer be correct. FHE schemes address this by in-
troducing ciphertext maintenance operations that do not change the
encrypted data but reduce the noise (growth) in a ciphertext. FHE
schemes are frequently used in leveled mode, where they support a
parameter-dependent fixed depth of computation before the noise
overflows into the message. Alternatively, bootstrapping, which
homomorphically refreshes the ciphertext, allows for arbitrarily
deep computations. However, bootstrapping is computationally
expensive and, therefore, usually avoided in state-of-the-art FHE
applications.

 

12



vFHE: Verifiable Fully Homomorphic Encryption WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA

zkSNARKs. A Zero-Knowledge Sucinct Non-interactive ARgument
of Knowledge (zkSNARK) is a protocol that allows a prover to con-
vince a verifier that it knows a witness to a public instance of an
NP-relation, without revealing additional information except that
this instance is in the language of the relation. zkSNARKs allow
the prover to generate a proof that the verifier can check indepen-
dently. In addition, the size of this proof is sub-linear in the size of
the instance and the witness. The main technical challenge in our
context is arithmetization: translating a high-level, domain-specific
property (e.g., that an encrypted logistic regression inference has
been performed correctly) into a suitable instance and witness for a
proof system. In particular, a widely supported and standard type of
NP relation for zkSNARKs is Rank-one Constraint Systems (R1CS),
where instances are triples of matrices𝐴, 𝐵,𝐶 over a (typically cryp-
tographically large) field, and the witness is a vector𝑤 such that
𝐴𝑤 ◦ 𝐵𝑤 = 𝐶𝑤 (here, ◦ denotes the Hadamard product).

3 Why Integrity Matters
FHE applications are virtually always proposed for settings with
highly sensitive data, e.g., in the medical and financial domain.
While much of the focus in the literature has been on the privacy re-
quirements of such applications, many works propose applications
(e.g., credit rating or fraud detection) where receiving an incorrect
result could be as harmful as a leak of the underlying data. How-
ever, few of these works consider the integrity of the computation,
despite the fact that FHE schemes generally do not provide any
integrity guarantees. In fact, FHE ciphertexts must inherently be
malleable: FHE requires a server to be able to generate new cipher-
texts from existing ones as part of the homomorphic computations,
yet FHE schemes generally cannot guarantee that the server has
indeed computed a valid ciphertext.

While detailed discussions of trust are rare in the FHE litera-
ture to-date, many papers make explicit reference to alleviating
correctness issues by relying on the semi-honest server assumption
(i.e., that the server does not deviate from the protocol). However,
this can give the false impression that breaking the semi-honesty
assumption would merely impact correctness. While correctness
issues do arise, the semi-honest server assumption is in fact much
more integral to FHE, as removing this assumption also impacts
the confidentiality guarantees of FHE [14, 17, 20, 29, 75]. In the
following, we first discuss how an adversary can directly exploit
a lack of integrity, before discussing how this can also be used to
fully undermine the confidentiality guarantees of FHE.

Correctness Issues
Fully Homomorphic Encryption inherently requires a server to be
able to create new valid ciphertexts from others, i.e., FHE schemes
must feature some level of malleability. In traditional encryption
schemes, preventing malleability is generally an explicit goal, as
it can introduce a variety of issues. For example, we require that
tampering with a TLS channel be detectable, to prevent an attacker
from changing a user’s view of the internet. We can easily prevent
adversaries on the network from tampering with FHE ciphertexts
by communicating only via secure and authenticated channels. This
does not, however, address the malleability issues that arise in the
context of a server-side adversary. While relying on server-hosted

applications inherently exposes one to the risk of incorrect server
behavior, FHE applications usually deal with especially sensitive
and important information. As a result, the potential impact of
incorrect results can be significantly higher. In addition, the com-
plexity of deploying FHE applications makes inadvertent mistakes
(e.g., poor noise management leading to overflow and meaning-
less results) more likely and harder to distinguish from malicious
behavior. Finally, there is a risk that deploying encryption might
provide a false sense of security, even though harm can arise not
only through leakages but also from incorrect results. For example,
mispredictions on medical models might expose patients to signifi-
cant health risks, and the reduced auditability of privacy-preserving
systems makes such errors less likely to be identified.

A malicious server might also be incentivized to substitute a
specific result that would benefit it. For example, if a client out-
sources the computation of a logistic regression model, the server
can simply ignore the encrypted training data and instead return a
model with maliciously chosen prediction behavior. Such behavior
can be hard to detect, as performing the computation client-side
in order to verify the result would defeat the point of outsourc-
ing this in the first place. In addition, as FHE applications tend
to be computationally expensive for the server, FHE provides an
economic incentive to cheat or ‘short-cut’ a computation. Without
additional measures in place, the server might simply choose to
return a fresh (public-key) encryption of an unrelated but plausible
value. Even when it is not clear what a plausible result might be, the
server might choose to evaluate the function only once, and then
return this result regardless of potentially differing inputs provided
in future queries. Note that this behavior might also arise from
implementation issues, such as an incorrect caching at any point
in the software stack. While correctness issues can be problematic,
they pale in comparison to the confidentiality issues that can arise
from a lack of integrity.

Confidentiality Issues
Confidentiality issues in FHE can arise from the interaction between
the client and the server. Specifically, the ability of an adversary to
observe the behavior of the client after it decrypts the result from
the server. For example, a client might query a public API with the
decrypted value, essentially providing the adversary with a perfect
decryption oracle. In the context of FHE, Key-Recovery Attacks can
exploit this further to recover the secret key, therefore also com-
promising security for both past and future encryptions. Intuitively
speaking, these attacks exploit the fact that the decryption opera-
tion combines the ciphertext and the secret key. While a decryption
of a valid ciphertext will only ever output the encrypted message,
a malformed ciphertext can result in (parts of) the secret key being
returned instead. For example, we briefly outline a simple key recov-
ery attack by Chenal and Tang [17] against the BV scheme [8]. In
BV, decryption is defined as (𝐷𝑒𝑐)sk (ct) = [ct0 + ct1 · sk]𝑡 , where
the inner operations are performed over 𝑅𝑞 (see [8] for details).
When decrypting the special ciphertext ct = (0, 1), one trivially
recovers the secret key (𝐷𝑒𝑐)sk (ct) = [0 + 1 · sk]𝑡 = [sk]𝑡 = sk
(under some assumptions on the parameters; we refer to [17] for
the details). In this simple attack, the client can easily detect that
this ciphertext has been maliciously crafted.

 

13



WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo & Anwar Hithnawi

However, FHE also features encryptions of the secret key that
are indistinguishable from standard ciphertexts. For example, key-
recovery attacks can take advantage of the evaluation keys provided
to the server in most schemes. These are encryptions of (func-
tions of) keys, which allow the server to perform crucial ciphertext
maintenance operations (e.g., relinearization, key-switching, boot-
strapping). If given access to a decryption oracle, an adversary
could decrypt these evaluation keys and recover the secret key.
In the (approximate) CKKS [19] scheme, which inherently inter-
mingles (key-dependent) noise with the message, such one-shot
key-recovery attacks are even possible given the decryption of any
ciphertext [51]. In a similar setting, key-recovery attacks are also
possible in practice for “exact” FHE schemes, due to their noticeable
probabilities of decryption error [18].

Full decryption oracles that would allow an adversary to exploit
the straightforward attacks we discussed above are thankfully not
commonplace in practice. However, adversaries can also exploit
more subtle reaction oracles, which arise much more naturally,
even in well-designed applications. For example, contact tracing
applications necessarily result in different behavior from the client
depending on whether a contact was detected. Sophisticated at-
tacks that exploit these reaction oracles have been shown to be
very practical for all modern FHE schemes [20]. Essentially, these
attacks rely on the ability to create a ciphertext with large, but
carefully chosen, amounts of noise, so that during decryption, the
result will either overflow the plaintext modulus or not, depending
on the concrete value of the secret key. Through a series of such
oracles, the adversary can iteratively recover bits of the secret key,
eventually recovering the full key. Because of the ability to batch
many different plaintexts into a single ciphertext in most modern
FHE schemes, the actual number of queries required to fully re-
cover a key this way can be extremely small and is primarily limited
by the quality of the reaction oracle. In addition to manipulations
from a malicious server, reaction oracles might also arise when a
client inadvertently chooses a circuit that causes noise overflow and
therefore has key-dependent behavior, which gives rise to the same
oracles even in a semi-honest setting. Most literature on FHE im-
plicitly assumes that circuits correctly realize the desired plaintext
functionality, yet in practice, ensuring that this hidden assumption
is always fulfilled is non-trivial [22, 23].

While it is possible to reduce the attack surface for reaction ora-
cles through careful protocol design, observable reactions cannot
generally be fully avoided, as it would prevent the client from act-
ing upon the results of the computation in any way. As a result,
violations of the semi-honest server assumption are not only a cor-
rectness issue, but can virtually always fundamentally undermine
the confidentiality of sensitive data in practice. Therefore, such
settings require FHE to be augmented with techniques that provide
integrity and malicious security, preventing an actively malicious
server from crafting the malformed ciphertexts that enable them to
exploit client reactions. However, addressing FHE integrity in an ac-
tively malicious setting is both inherently challenging and depends
significantly on the topologies of trust in a given deployment.

4 Taxonomy of Integrity Approaches
A variety of approaches towards FHE Integrity has been proposed,
but we currently lack a systematic understanding of how expressive
they are, the assumptions they make and the guarantees they pro-
vide, and, as a result, their applicability to the different real-world
deployment topologies we identified. In this section, we aim to
provide a clearer understanding of existing approaches and their
capabilities. Towards this, we provide a taxonomy of existing ap-
proaches, categorizing them by the underlying integrity primitives
they employ. In Section 5, we introduce tools that implement and
automate the most promising of these approaches, along with effi-
ciency and useability optimizations. We then follow this up with
an experimental evaluation of the most promising solutions in
Section 6 to assess practical considerations.

Scope
Ciphertext malleability is a defining aspect of FHE, as it is necessary
to allow homomorphic computations to be executed over encrypted
data. However, as we discussed in Section 3, this malleability is also
the root cause of a series of integrity and security issues. Traditional
approaches to integrity aim to completely eliminate malleability
(e.g., authenticated encryption with associated data, message au-
thentication codes, or signatures) and are therefore not suitable to
secure computation. This issue of selective malleability also arises
in the context of secure Multi-Party Computation (MPC). However,
most techniques do not transfer to the FHE setting since they rely
on the interactive nature of MPC (e.g., cut-and-choose protocols).
Cryptographically guaranteeing the correct execution of computa-
tions is never trivial, but modern Zero Knowledge Proofs are able
to prove the correctness of complex functionalities efficiently and
succinctly. However, the encrypted nature of FHE requires addi-
tional considerations, and we therefore only consider FHE-specific
techniques.

There have also been several proposals for application-specific
approaches to achieving stronger integrity guarantees and/or mali-
cious security in the context of FHE. For example, tailored proof
systems have been proposed for the use of (F)HE when used as
specialized building blocks in larger protocols (e.g., to generate
multiplication triplets for secret-sharing-based secure multiparty
computation [44]). Alternatively, some applications use additional
‘blinding’ on the messages they encrypt so that even a full com-
promise of the FHE system does not give immediate access to
the underlying values [16]. Related approaches focus on proofs of
correct encryption [13, 25, 54] or decryption [10, 56] for FHE ci-
phertexts. These approaches are frequently highly efficient, as they
can be tailored specifically to the required setting, both in terms of
required guarantees and in terms of implementation. However, as
these techniques generally do not transfer to more general settings,
we consider them out of scope for this work. In a similar vein, we
exclude approaches that rely on primitives or constructions for
which no efficient and secure instantiations are known (e.g., relying
on indistinguishability obfuscation [72]).

We categorize the different approaches into three groups based
on the underlying integrity primitives they build upon: Message Au-
thentication Codes (MAC), Zero-Knowledge Sucinct Non-interactive

 

14



vFHE: Verifiable Fully Homomorphic Encryption WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA

ARgument of Knowledges (zkSNARKs), or Trusted Execution Envi-
ronments (TEE). In the following, we discuss the approaches in each
category in more detail, highlighting advantages and shortcomings.

Message Authentication Codes
While Message Authentication Codes (MACs) have long been used
to prevent any malleability in ciphertexts in the context of tra-
ditional symmetric-key encryption, homomorphic MACs are fun-
damentally different constructions and share little beyond their
symmetric nature with their namesakes (i.e., a secret MAC-specific
key is required both to generate and verify them). Homomorphic
MACs are essentially tags that are associated with either the plain-
text or ciphertext (depending on the specific approach) and are
processed alongside them by the server. The client then recomputes
the (plaintext) function the server (allegedly) evaluated, but only
over these tags, which - if done correctly - can significantly lower
the computational effort required.

As a consequence of their symmetric nature, MAC-based ap-
proaches are fundamentally incompatible with scenarios that re-
quire (private) inputs from more than one party, i.e., they only
support the outsourcing setting. In this setting, they provide strong
guarantees for both correctness and confidentiality. While they
are usually proposed against a slightly weaker adversary model,
the restricted setting they operate in means that they also achieve
security against stronger IND − CCA1 adversaries trivially. Similar
to traditional MACs, homomorphic MACs can be designed to work
in three different modes, which impact practical aspects such as
their expressivity.

Encrypt-then-MAC. The Encrypt-then-MAC (EtM) approach firsts
encrypts the plaintext using FHE and then applies the MAC to
the resulting ciphertext. Therefore, the MAC does not need to of-
fer confidentiality guarantees. However, this requires the MAC to
be homomorphic with respect to operations on ciphertexts, which
notably seems even more complex than the homomorphism over
plaintexts offered by FHE. For example, Fiore et al. make use of this
paradigm in [31], instantiating their MAC using pairings. In order
to enable some form of homomorphism, they introduce a homomor-
phic hash function to bridge the gap between FHE ciphertexts and
the MACs, i.e., polynomial rings and the pairing groups. However,
the combination of primitives they rely on limits the expressiveness
of the resulting construction. Specifically, it only supports compu-
tations with at most one multiplication gate. Currently, it is unclear
whether it is possible to create MACs that support both arbitrarily
deep circuits and complex operations on the ciphertexts.

Encrypt-and-MAC. In the Encrypt-and-MAC (EaM) paradigm, the
initial MAC and FHE ciphertext are computed from the same plain-
text and are then processed in parallel (but independently) to pro-
duce the output MAC and ciphertext pair. Since the MAC in EaM is
not encrypted under FHE, it must itself provide strong security, i.e.,
be semantically secure. In addition, the MAC must offer the same
homomorphic operations as the underlying FHE scheme. Li et al.
construct such an EaM scheme using multilinear maps [52]. While
it describes how to support addition and multiplication operations,
it is not clear how this scheme can be extended to handle the com-
plex ciphertext maintenance operations (e.g, relinearization) that

are necessary for modern FHE schemes to achieve state-of-the-art
efficiency. In general, it is unclear how to expand the expressive-
ness of homomorphic MACs while maintaining the strong security
guarantees required for the EaM approach.

MAC-then-Encrypt. The MAC-then-Encrypt (MtE) paradigm first
computes a MAC over the plaintext and then encrypts the MAC-
augmented plaintext under FHE. Gennaro and Wichs [38] provided
one of the first FHE integrity construction based on this paradigm.
However, the construction is not efficiently verifiable, i.e., verifying
the MAC requires recomputation that is as expensive as computing
the original result. The work proposed potential ways to solve this
issue, but did not instantiate a solution. Catalano and Fiore [11]
addressed the verification efficiency, but in turn their construction
is limited to arithmetic circuits of a bounded depth. More recently,
Chatel et al. [12] have generalized these two approaches to achieve
efficient verification for arbitrary circuits, providing the first prac-
tical FHE integrity scheme that can efficiently support arbitrary
circuits and modern state-of-the-art schemes, if only in the out-
sourced setting.

zkSNARKs
zkSNARKs allow a prover to convince a verifier of the truth of
a statement with a non-interactive and succinct proof, and with-
out revealing additional information. In the context of FHE, the
server would compute the FHE circuit as normal, storing any (en-
crypted) intermediate results, and then compute a Succinct Non-
interactive ARgument of Knowledge (SNARK) that asserts that the
server knows an assignment of intermediate values to the circuit
so that, for the given input, the circuit results in the output cipher-
text. While existing literature frequently suggests combining FHE
with proof systems in order to strengthen its circuit guarantees,
a straightforward combination does not, in fact, achieve security
against an active adversary. Instead, we need to augment this ap-
proach with techniques such as the Naor-Yung Construction [59]
that achieve not only correctness but also IND − CCA1 security.

Using zero-knowledge proofs (zkSNARK), the server can provide
the required correctness guarantees while maintaining the privacy
of its own inputs. This allows this approach to handle the two-
and multi-party computation settings. However, the latter might
require either the use of publicly verifiable proofs in order to allow
all clients to verify the proof, or the creation of separate proofs
for each of the clients. When extended appropriately, ZKP-based
techniques can achieve strong security guarantees against active
adversaries in all settings. However, different proposed solutions
differ dramatically in their expressiveness with regard to input
checks and the underlying operations of modern state-of-the-art
FHE schemes.

FHE-specific zkSNARKs. Recent work has focused on developing
proof systems tailored to FHE. One line of work uses (homomor-
phic) hashing to bring the size of FHE ciphertexts down into a
range that can be handled more efficiently with ZKP techniques.
This includes the first SNARK for FHE presented by Fiore et al. [32]
and follow-up work by Bois et al. [5]. However, the homomor-
phic hashing requirement limits this approach to simple schemes
such as the BV scheme [8] which does not feature the complex

 

15



WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo & Anwar Hithnawi

ciphertext maintenance operations that are necessary to achieve
the practical efficiency enjoyed by state-of-the-art FHE schemes.
In addition, there has been work on more limited proof systems
designed specifically to prove the correct encryption [13, 25, 54]
or decryption [10, 56] for FHE ciphertexts. These support modern
FHE schemes, but the techniques used generally do not transfer
to the significantly more complex challenge of proving FHE com-
putation correctness. Nevertheless, they can be an integral part of
overall solutions, e.g., in the multi-party setting, where proofs of
encryption are required for all inputs.

Ring-SNARKs. Rather than focusing on SNARKs specifically for
FHE schemes, Ganesh et al. [34] propose an alternative approach
that focuses on proof systems for the Ring algebra used by many
FHE schemes. While the initial work relied on an inefficient encod-
ing to guarantee security, we show in Section 5 how to optimize
these to achieve a significantly more practical system. The ring-
based SNARK drastically improves the efficiency of proving the
operations that make up basic homomorphic operations such as
addition and multiplication. However, it cannot express ciphertext-
maintenance operations which frequently require either switching
between different rings or non-ring operations such as rounding.
Without support for these, proofs are limited to small (specifically,
shallow) circuits. In addition, their ring-based nature does not of-
fer a way to efficiently express input constraints (which, again,
are frequently about properties beyond the ring algebra). As a re-
sult, Ring-SNARKs (in their current) form are limited to (simple)
outsourcing settings.

Generic zkSNARKs. A variety of works simply suggests combining
FHE with generic ZKP techniques in order to address FHE integrity.
However, actually realizing such solutions in practice faces signifi-
cant challenges. While solutions such as zero-knowledge Virtual
Machines (zkVMs), proof systems that offer the ability to run and
prove nearly unmodified software, could provide an easy path to
implementation, the performance is prohibitive for even the most
simple applications [6]. Using more efficiency-focused traditional
proof systems, however, requires arithmetizing complex homomor-
phic operations into the native algebra over which these proof
systems express their constraints, which is non-trivial.

Trusted Execution Environment Approaches
Trusted Execution Environments (TEEs) are hardware components
capable of isolating code running on them from the rest of the
machine, even the operating system or hypervisor. TEEs are com-
mercially available in commodity hardware provided by all major
hardware vendors, especially when considering server platforms.
While TEEs can be used to provide confidentiality, a series of at-
tacks [30, 62] has put their suitability for this task in question.
However, their integrity protections, i.e., their ability to attest to
the program running in the enclave, have so far mostly resisted
practical attacks [58].

TEEs can support a wide variety of deployment settings, assum-
ing the necessary hardware is available. Specifically, they can easily
express required input checks in the two- and multi-party settings
through simple code; attestation could even be used by the input

parties to provide guarantees of correct encryption in the MPC set-
ting. While it might be difficult to compare the guarantees derived
from trusted hardware with traditional cryptography approaches,
TEEs can be used, with trivial extensions to the work described
in the literature, to achieve protections against a fully malicious
server, assuming the server cannot compromise (the attestation
component of) the secure enclave.

FHE-in-TEE. TEE-based solutions are conceptually much simpler,
and essentially revolve around the challenge of realizing the com-
plex FHE implementations inside the frequently restrictive enclave
environment. Natarajan et al. [60] present an FHE-in-TEE design
that ports the Microsoft SEAL library [21] to Intel SGX. As a result,
it fully supports a variety of state-of-the-art FHE schemes. Exist-
ing work uses a traditional SDK-based porting strategy [63], but
more recent approaches to realizing software in SGX can support
virtually unmodified binaries of existing code [15]. This not only
improves usability, but is also expected to provide improved perfor-
mance. However, this approach is less portable between different
vendors.

In this work, we focus on cryptographic integrity approaches,
as they are the most widely applicable and provide the strongest
guarantees. Out of these, we specifically focus on general-purpose
SNARKs to benefit from their strong guarantees, expressivity (both
for supporting different FHE schemes, as well as additional input
checks), and flexibility in the underlying proof system (and various
efficiency tradeoffs). In the next section, we introduce two software
frameworks that implement and automate the arithmetization of
FHE operations, along with efficiency and usability optimizations.

5 From Theory to Practice
Generic proof systems are the most promising and flexible tool
for adding integrity to FHE pipelines. However, this theoretical
promise has not yet been realized in practice, and is hampered by
three main challenges: (i) it is technically non-trivial to arithmetize
FHE schemes for proof systems, (ii) a significant amount of opti-
mization taking advantage of the specific properties of FHE schemes
is required to improve efficiency, and (iii) the resulting software
artefact needs to be accessible and easily useable by practitioners.

In the remainder of this paper, we address these three challenges
in turn, presenting a comprehensive implementation, several opti-
mizations, and a framework to augment existing FHE applications
with integrity guarantees and to foster further research in this area.

zkOpenFHE
In order to provide a solid foundation for FHE integrity research, we
introduce zkOpenFHE, a framework that augments the OpenFHE
library with ZKP-based integrity guarantees. We chose OpenFHE as
the basis for our work because it is a comprehensive and modular li-
brary that supports a wide range of FHE schemes (B/FV, BGV, CKKS,
FHEW, TFHE). zkOpenFHE’s application programming interface
(API) is a superset of OpenFHE’s API, allowing users to easily add
integrity guarantees to their existing FHE applications. Starting
with a program that uses OpenFHE to perform computations on
encrypted data, the user must additionally specify which are the
inputs and outputs of the computation. zkOpenFHE provides three
modes of operation:

 

16



vFHE: Verifiable Fully Homomorphic Encryption WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA

EVALUATION: In this mode, zkOpenFHE simply leverages OpenFHE
to run the encrypted computation with no integrity guarantees
and no additional slowdown. This mode is intended primarily for
prototyping, debugging, and testing.
CONSTRAINT_GENERATION: zkOpenFHE only considers the circuit
of the encrypted computation, and automatically arithmetizes it
(while applying the local and global optimizations described in the
next sections) to generate the corresponding constraints. This mode
is intended as a one-time compilation step (both for the prover and
verifier). Along with the constraint, zkOpenFHE also generates
a mapping from the FHE circuit to individual variables for the
constraint system. For proof systems with a circuit-specific setup
phase, the output of this mode can be used as input to the setup
phase in order to generate the common reference string.
WITNESS_GENERATION: In this mode, zkOpenFHE uses OpenFHE
to run the encrypted computation, and uses the constraints and
circuit-to-variable mapping generated in CONSTRAINT_GENERATION
mode to automatically generate a satisfying witness for the con-
straint system. zkOpenFHE outputs the result ciphertext of the FHE
computation, along with the witness. This witness can then be used
with zkOpenFHE’s built-in Groth16 [41] prover to generate a proof,
or it can be exported to be used with an external proof system.

Rinocchio
Among the FHE-friendly proof systems, only Rinocchio [34] by
Ganesh et al., is capable of expressing (parts of) modern FHE
schemes. However, its expressiveness remains limited, as Rinoc-
chio only supports arithmetic ring operations, whereas some FHE
operations (e.g., relinearization) use component-wise rounding op-
erations internally. As a result, we are severely limited in the com-
plexity of the circuit we can use with Rinocchio. As presented,
Rinocchio uses a highly inefficient encoding system, and we extend
it with a more optimized encoding scheme, which we discuss below.
Additionally, Rinocchio only provides around 60 bits of (compu-
tational) soundness for the rings used in FHE. We use a simple
soundness amplification strategy, running three separate instances
of the protocol to achieve stronger soundness guarantees.

Optimizing Rinocchio. In the following, we describe our optimiza-
tions for the Rinocchio protocol by Ganesh et al. [34]. The original
paper introduces two possible encodings for the cyclotomic rings
used by FHE. The first one (dubbed “Regev-style” encoding) en-
codes each of the 𝑁 coefficients in Z𝑞 by encrypting it into an
element of Z𝑛

𝑄
using a LWE cryptosystem scheme; the parameters

of the encoding scheme are chosen to ensure that the encodings
are 𝑘-linearly-homomorphic, where 𝑘 is determined by the circuit.
The second construction (“Torus encoding”) uses a variant of the
TFHE cryptosystem. The Regev encoding has an expansion factor
of 𝑁 ·𝑛 ·log2 (𝑄 )

𝑁 ·log2 (𝑞)
= 𝑛 · log𝑞 (𝑄), as it encodes each of the 𝑁 coefficients

in Z𝑞 as an element of Z𝑛
𝑄
. However, most FHE implementations

will not be able to support a plaintext modulus of the size of 𝑞 (typ-
ically hundreds of bits), and in practice one would need to encode
each of the 𝑙 CRT components individually, leading to an expansion
factor of 𝑙 · 𝑛 · log𝑞 (𝑄). Using this encoding will thus slow down
the prover and verifier significantly, as all encodings, decodings,
and computations over the encoding space will be slow.

Therefore, we propose a new RLWE Regev-style encoding for
Rinocchio, taking advantage of the batching technique commonly
used in FHE. For many FHE schemes, if the plaintext modulus 𝑡
satisfies the condition 𝑡 = 1 mod 2𝑁 , one can use an efficient en-
cryption that packs 𝑁 plaintext values (interpreted as an element of
𝑅𝑡 ) into a single ciphertext in 𝑅2𝑞 . For our encoding, we take an input
in 𝑅𝑞 as 𝑙 polynomials in 𝑅𝑞1 , . . . , 𝑅𝑞𝑙 (this decomposition is already
used natively by the FHE scheme for efficiency reasons), and en-
code each of those polynomials as an element in 𝑅𝑄 . The expansion
factor in this case is 𝑙 · log𝑞 (𝑄), improving on the Regev encoding
by a factor of 𝑛. Using this batching technique imposes the require-
ment 𝑞𝑖 = 1 mod 2𝑁 on the ciphertext moduli of the FHE scheme;
however, this condition is already necessary for some schemes (e.g.,
RNS-optimized BGV [45]), and can be easily satisfied for all other
schemes. We provide an open-source implementation [46] of this
optimization of the Rinocchio SNARK.

General-Purpose SNARKs
State-of-the-art proof systems are highly efficient, but have primar-
ily been tailored to applications that share few characteristics with
FHE. Expressing modern state-of-the-art FHE schemes introduces
a series of challenges not just because homomorphic operations,
especially ciphertext maintenance operations are computationally
complex, but also because FHE and proof systems operate on funda-
mentally different types of algebras. The Rinocchio scheme [34] is
based on Ring-Learning with Errors (RLWE) and uses rings of the
form 𝑅𝑞 := Z𝑞 [𝑋 ] /⟨𝑋𝑁 + 1⟩, i.e., polynomials with degree up to 𝑁
(usually 𝑁 > 213) and coefficients in Z𝑞 . Most proof systems, on the
other hand, mostly use large prime fields (i.e., Z𝑝 where 𝑝 is usually
a 254-bit prime). When using modern NTT-based implementations
of FHE, we do not need to consider the polynomial reduction mod-
ulo 𝑋𝑁 + 1, however, we must still address the mismatch between
the coefficient modulus 𝑞 and the field modulus 𝑝 . Existing works
frequently propose instantiating the FHE and proof systems so that
𝑞 = 𝑝 , however, this is only possible for toy FHE schemes as both
efficient FHE and proof systems impose significant restrictions on
the moduli, frequently leaving no overlap. While FHE security ben-
efits from limiting the size of 𝑞, the security of the proof system
often requires sufficiently large 𝑝 , introducing an inherent conflict.
Additionally, modern FHE schemes generally use the Chinese Re-
mainder Theorem (CRT) to decompose the coefficient modulus 𝑞
into 𝐿 even smaller moduli 𝑞1, . . . , 𝑞𝐿 , working on each Residue
Number System (RNS) limb independently to improve performance.
As a result, matching the proof system and FHE moduli is almost
always infeasible for practical applications.

Given a computation defined as a circuit, different proof sys-
tems follow different approaches in translating the correctness of
computation into an arithmetic proof system. We use R1CS, one of
the most widespread arithmetization approaches, which converts
circuits into a system of Rank-1 constraints. Basic arithmetic opera-
tions such as additions and multiplications can be realized directly
using a single constraint. However, more complex operations (e.g.,
rounding) require a larger number of constraints. Since the majority
of operations in (NTT-based) FHE are simple arithmetic operations,
they can be efficiently translated to R1CS. Beyond R1CS, STARKs [4]
present an alternative way to express computations not as circuits

 

17



WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo & Anwar Hithnawi

but as a series of data manipulations, in the so-called Algebraic
Intermediate representation (AIR). The efficiency of STARKs is di-
rectly related to the size of the state space and the complexity of
the transition function describing each step. Since FHE features
large ciphertext expansion and a high-degree modulo function,
this makes it a poor candidate for realization using STARKs. One
can also forgo explicit arithmetization and instead directly express
arithmetic circuits. However, this approach scales poorly with the
number of inputs, which is high for FHE circuits due to the ex-
pansion from individual ciphertexts to 2𝑁 field elements (where
𝑁 ≥ 213). Finally, generalizations of R1CS have also been proposed
(such as Plonk-ish and CCS relations); however, these do not im-
mediately seem to offer a tangible benefit for FHE arithmetization
(in particular, arithmetizing modular reductions leads to custom
gates with very high degree, which are inefficient to prove). We
focus on R1CS for this first version of zkOpenFHE, but our modular
framework allows for easy extension to other constraint systems
as they become more generally available.

Emulating modular arithmetic. We use a modulo emulation method
that bridges the modulus gap. This allows us to choose 𝑞 < 𝑝 , which
complements each system’s security requirements while requiring
them to match only the constraints of their own system. We can
then emulate operations modulo 𝑞𝑖 in the proof system’s (mod 𝑝)
field, by explicitly computing the modular reduction mod 𝑞𝑖 after
each arithmetic operation. However, proving the correctness of
this modular reduction (which is necessary for soundness to be
meaningful) requires two expensive range proofs. As, in practice,
𝑝 ≫ 2𝑞, we propose an optimization based on lazy modulo emula-
tion. Because modular reduction produces the same result whether
it is applied to the inputs or the outputs of an operation, we can
wait until just before the results could overflow and only compute
and prove the modulo reduction then. Specifically, we can perform⌈
log2 𝑝
log2 𝑞

⌉
multiplication operations in sequence before needing to

reduce. For small circuits with log2 𝑞 ≈ 60 bits and a standard
field-based proof system with log2 𝑝 ≈ 254 bits, this enables a 4×
reduction in the number of modulo operations.

Without this optimization, there is little difference between the
RNS and non-RNS approaches with respect to the effort required
to prove modulus gates. This is because the cost of proving a mod-
ular reduction is roughly linear in the bit-width of the modulus.
However, with this optimization, using the RNS approach allows
us to reduce the number of modular reductions even further. Con-
sidering an FHE circuit with 𝑘 arithmetic operations, a non-RNS,
non-optimized implementation requires 𝑘 modular reductions of
size log2 𝑞. This optimization reduces this to roughly 𝑘 log2 𝑞

log2 𝑝
modu-

lar reductions of size log2 𝑞. By RNS-splitting each element into 𝐿
limbs, the size of each gate is reduced to log2 𝑞𝑖 ≈

log2 𝑞
𝐿

but, with-
out any optimizations, the number of modular reductions increases
to 𝑘𝐿, negating the benefits. However, with this optimization, we
require only 𝑘𝐿

log2 𝑞𝑖
log2 𝑝

≈ 𝑘
log2 𝑞
log2 𝑝

modular reductions of reduced

size log2 𝑞
𝐿

. Therefore, with this optimization, RNS allows us to re-
duce the cost per modular reduction even while already reducing
their number. For example, with log2 𝑞 ≈ 60 bits and log2 𝑝 ≈ 254
bits as above, an RNS approach splitting 𝑞 into two 30-bit moduli

would halve the cost again, giving us a total 8× decrease in modular
reduction overhead.

circomlib-fhe
We have implemented a comprehensive optimization of RLWE
and LWE FHE schemes in the high-level domain-specific circom
language. This library, circomlib-FHE, is designed to be used as a
prototyping library for the arithmetization of FHE schemes. While
circom does have support for various proving backends, circomlib-
FHE is not designed to be directly applied to prove and verify
an encrypted computation. Rather, it is designed to be used as a
prototyping tool to quickly and efficiently test and optimize arith-
metizations for FHE schemes in the context of proof systems. We
make circomlib-FHE available as an open-source library [33] to
foster further research in this area.

6 How efficient is FHE with Integrity?
Leveraging circomlib-FHE and zkOpenFHE, in this section we aim
to give of sense of the slowdown introduced by adding integrity to
existing FHE pipelines. First, we compare the runtime of different
approaches to FHE integrity (see Section 4). In Section 6.2, we
then focus on the promising approach of general-purpose proof
systems, and examine which building blocks of FHE schemes are
most expensive to arithmetize, and how different FHE schemes
compare in terms of constraints.

6.1 Comparing primitives
In order to provide an understanding of the concrete costs of differ-
ent approaches to FHE integrity, we implement and evaluate a vari-
ety of different approaches. We consider homomorphic MACs [12],
FHE-in-TEE [60], Ring-SNARKs [34] and an instantiation of a
generic proof system [37] with Groth16 [41]. While real-world
FHE applications frequently fall into the two-party or multi-party
setting, we restrict our evaluation to the outsourcing setting, as
several techniques do not support further settings [12, 34]. Con-
sidering the outsourcing setting allows us to have a more direct
comparison, and, as we will show, already presents a significant
challenge for current solutions. Because Ring-SNARKs [34] are not
only limited to the outsourced settings, but also do not support
ciphertext maintenance operations, we consider two different work-
loads, both aimed at logistic regression inference. In the standard
workload, we consider a setting with polynomial degree 8192, 32 bit
plaintext modulus and a more complex circuit for 512 features using
a degree eight polynomial approximation for the sigmoid operation.
In the simplified workload, we consider a setting with polynomial
degree 2048, 16 bit plaintext modulus and a simplified circuit for
64 features using a degree two polynomial approximation for the
sigmoid operation.

Implementation & Setup. For the homomorphic MACs, we re-use
the original implementation by Chatel et al. [12]. For the TEE-
based approach, we use Gramine [15] to encapsulate and attest an
otherwise unmodified FHE implementation (specifically, we use
the Microsoft SEAL [21] library) running in a Docker container.
For the ring-SNARK and the generic SNARK approach, we use
our optimized implementation of Rinocchio and our zkOpenFHE
library, respectively. We evaluate our implementations on an AWS

 

18



vFHE: Verifiable Fully Homomorphic Encryption WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA

FHE MAC Groth16 Rinocchio
10−3
10−2
10−1
100
101
102
103
104
105
106

Ti
m

e 
(s

)

(a) Client

FHE MAC Groth16 Rinocchio
10−3
10−2
10−1
100
101
102
103
104
105
106

(b) Server

FHE MAC Groth16 Rinocchio
10−3
10−2
10−1
100
101
102
103
104
105
106

(c) Setup

Figure 1: Runtimes for simplified logistic regression inference, comparing a pure FHE baseline with integrity approaches.

FHE MAC Groth16 TEE
10−3
10−2
10−1
100
101
102
103
104
105
106

Ti
m

e 
(s

)

(a) Client

FHE MAC Groth16 TEE
10−3
10−2
10−1
100
101
102
103
104
105
106

(b) Server

FHE MAC Groth16 TEE
10−3
10−2
10−1
100
101
102
103
104
105
106

(c) Setup

Figure 2: Runtimes for standard logistic regression inference, comparing a pure FHE baseline with integrity approaches.

c5.9xlarge instance with 32 vCPUs and 72 GB of RAM, with the
exception of the TEE-based implementations, where we use an
Azure DC16s v3 instance with 16 vCPUs and 32 GB of RAM, as
this provides the necessary Intel SGX enclave.

In Figure 2, we present the client- and server-runtimes for the
standard logistic regression inference workload. We contrast MAC,
SNARK, and TEE-based integrity approaches with a baseline of
“plain” FHE without integrity guarantees. Note, that this is an arti-
ficial workload, i.e., the encryption of the inputs already requires
significantly more client-side computation than evaluating the un-
derlying function directly on the client would require. Nevertheless,
it allows us to investigate the overhead of different FHE integrity
approaches. While all techniques introduce significant overhead
for the server, there is a vast gap between the overhead introduced
by MACs and TEEs and the overhead introduced by a solution
using generic proof systems - even after our significant optimiza-
tions to reduce the number of constraints required. In the TEE
setting, the server is realized via Docker containers, introducing a
base overhead that is not present in the other (non-containerized)
approaches. For more real-world sized workloads, however, this
overhead should amortize to no more than 1 order of magnitude
over the FHE baseline, and in practice, frequently much lower over-
heads (e.g., 2-4x [15, 60]).

The standard version of our workload fully utilizes the SIMD
(Single-Instruction Multiple Data) parallelism present in RLWE-
based FHE schemes by encrypting data corresponding to differ-
ent features into the different slots of a single ciphertext. This

(latency-)optimized approach is common in virtually all state-of-
the-art FHE workloads using RLWE-based FHE schemes, but re-
quires homomorphic rotations, which cannot be expressed in Ring-
SNARKs. In Figure 1, we therefore consider our simplified workload
which can be expressed by Ring-SNARKs, contrasting it against
generic proof systems, MACs and an unprotected FHE baseline.
The simplified version considers not only a significantly smaller
problem size, but also switches from latency-optimized batching
to a simplified encoding, where each feature is encrypted into its
own ciphertext. As we can see, Ring-SNARKs offer a noticeable
reduction in server-side overhead compared to generic proof sys-
tems, but still introduce significant overheads. In addition, they also
increase client-side verification effort compared to the extremely
efficient Groth16 SNARK.

Overall, while we demonstrate that it is possible to run non-
trivial FHE circuits while providing strong integrity guarantees, it
is clear that SNARK-based solutions are, as of now, far from being
practical for complex workloads.

6.2 R1CS Constraints
While the results of the previous section give a good sense of the
overhead introduced by different integrity primitives in the re-
stricted outsourcing setting, SNARK-based approaches are the only
cryptographic approach that provide meaningful integrity guaran-
tees in more complex deployment settings. In addition, the concrete
runtime of a SNARK-based approach varies with the proof system
used (e.g., Groth16 provides constant and concretely small proof

 

19



WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo & Anwar Hithnawi

Scheme ModSw. KeySw. NTT SignDec. Ext. Prod.
103 525 16 297 984 179 728 591 872 133 120

FHEW 0.04% 0.65% 73.01% 21.63% 4.66%
TFHE 0.07% 1.08% 72.94% 18.01% 7.90%

Table 1: R1CS constraints for common building blocks FHE
schemes (modulus-switching, key-switching, NTT, signed
digit decomposition, RLWE-RGSW external product).

size and verification runtime, at the expense of a trusted setup and
log-linear prover runtime). In this section, we therefore focus on
the number of constraints required to arithmetize different build-
ing blocks of FHE schemes, as this directly influences the runtime
of a SNARK-based approach. We focus on the FHEW and TFHE
schemes, as they allow us to study the behaviour of more complex
building blocks (in particular, a full bootstrapping operation) with
lower complexity than other schemes (e.g., B/FV, BGV or CKKS).

Table 1 shows the number of constraints for common FHE sub-
operations, as well as their relative contribution to the total number
of constraints required for a bootstrapping operation (using both
the FHEW and TFHE scheme). These numbers were obtained by
automatically arithmetizing the respective operations using the
circomlib-FHE library. Key-switching proves to be the most expen-
sive operation, followed by signed digit decomposition and NTT.
However, since NTTs are used much more frequently, they total
> 70% of the constraints required for bootstrapping, in both FHEW
and TFHE.

Table 2 shows the contributions of the different phases of an
accumulator (initialization, update, and extraction) towards a single
bootstrapping operation. Both FHEW and TFHE require more than
a billion constraints for a single bootstrapping operation, with the
vast majority of constraints being required for the update phase.
This number of constraints is larger than what typical proof sys-
tems can handle (e.g., without running out of memory), and actu-
ally proving this relation would require a more sophisticated proof
system that can handle such large constraint sets. Nevertheless,
most of these constraints stem from NTTs (interestingly, FHE run-
times are also dominated by NTTs), and progress towards a better
NTT arithmetization would immediately yield significant improve-
ments. RLWE-based schemes such as B/FV or BGV require fewer
constraints for low-depth circuits (since they do not require boot-
strapping). Nevertheless, NTTs also contribute the most towards
the total number of constraints.

7 Discussion
Fully Homomorphic Encryption is emerging as a promising solu-
tion for real-world privacy-preserving systems. However, as we
transition from proofs of concept to actual deployment, we must
consider the issue of integrity more carefully. This is especially true
when considering adversarial settings beyond the semi-honesty
assumption that underlies the vast majority of current work on
FHE. While the implications of this assumption are well understood
in the cryptographic community, there seems to be a lack of con-
sideration for the implications that violating this assumption has
on practical deployments. We hope that this paper serves to bring

Scheme Accumulator BootstrappingInit Update Extract

FHEW 1 233 936 2 566 200 000 359 456 2 584 298 426
TFHE 1 233 936 1 500 651 008 359 456 1 518 749 434

Table 2: R1CS constraints for accumulator phases and a single
programmable bootstrapping operation.

this issue to wider attention in the community and encourage more
careful consideration of integrity in FHE systems.

FHE integrity has, so far, virtually always been “addressed” via
trust assumptions, be they direct (semi-honest server assumption)
or indirect (hardware trust assumption for TEEs). While a variety
of solutions based on cryptographic hardness assumptions have
been proposed, these struggle to support non-trivial applications
effectively. We have seen a variety of works that propose solutions
that fall short of achieving malicious security or only consider im-
practically restrictive adversarial models. In addition, of the existing
solutions, a significant number focuses primarily on the outsourc-
ing setting, which is not sufficient to enable the vast majority of
actual and proposed FHE-based privacy-preserving applications. In
general, our understanding of malicious security in the context of
FHE lags significantly behind similar considerations in the fields
of secure multi-party computation. This is likely not least due to
the significant additional challenge for integrity solutions that FHE
presents due to the noisy nature of FHE encryption and computa-
tion. Clearly, there is a significant need for further exploration, but
also increased education and communication both to guide future
research towards relevant settings and to make practitioners aware
of these considerations.

In this paper, we shed light on the inherent complexity of crypto-
graphically ensuring the integrity of FHE computations, specifically
in the context of more complex topologies of trust which appear in
many real-world deployment scenarios. We provide a systematic
analysis of existing work considering the assumptions they make
and guarantees they provide in the deployment settings we identify.
We augment our analysis with an experimental evaluation of the
most promising approaches to assess the current practicality of
providing integrity protections for FHE. Even with our (sometimes
significant) optimizations, we show that most approaches fall con-
siderably short of being widely applicable in practice due to the
severe performance overhead of generic techniques. Unfortunately,
solutions targeted specifically at FHE that promise to alleviate these
performance issues fall short in their expressiveness and/or appli-
cability to real-world deployment scenarios and therefore do not
currently present a practical alternative.

Given the current state-of-the-art, work on deploying FHE should
currently proceed cautiously and ensure that it can either fully jus-
tify a semi-honesty assumption or rely on hardware trust in order to
ensure integrity. While there remain more than enough application
scenarios for which these are workable solutions and which are yet
to be explored with FHE, this clearly poses a noticeable restriction
on the possible applications of FHE. As a result, we believe the
community needs to increase its efforts into achieving practical
integrity guarantees for FHE. Most likely this will need to follow

 

20



vFHE: Verifiable Fully Homomorphic Encryption WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA

the FHE+zkSNARK approach, however, there are multiple paths
forward in this area. Results might be achieved both by improving
the efficiency of emulating FHE in existing proof systems, or by
unlocking the potential of custom FHE-friendly proof systems by
co-designing them with modern state-of-the-art schemes in mind.
With zkOpenFHE, we propose a framework that we hope can act
as a solid foundation for such future research into verifiable FHE.

Acknowledgments
We would like to thank Chaya Ganesh, Anca Nitulescu, Kenny
Paterson, Eduardo Soria-Vazquez, Michael Steiner, Nojan Shey-
bani, Erin Hales, Lea Nürnberger, Martha Norberg Hovd, and the
Privacy-Preserving Systems Lab team at ETH Zurich for their in-
sightful input and feedback. We would also like to acknowledge our
sponsors for their generous support, including Meta, Google, SNSF
through an Ambizione Grant No. 186050, and the Semiconductor
Research Corporation.

References
[1] Yongdae An, Seungmyung Lee, Seungwoo Jung, Howard Park, Yongsoo Song, and

Taehoon Ko. 2021. Privacy-Oriented Technique for COVID-19 Contact Tracing
(PROTECT) Using Homomorphic Encryption: Design and Development Study. J.
Med. Internet Res. 23, 7 (July 2021), e26371. http://dx.doi.org/10.2196/26371

[2] Apple Inc. 2024. Announcing Swift Homomorphic Encryption. https://swift.org/
blog/announcing-swift-homomorphic-encryption/.

[3] Apple Inc. 2024. Getting up-to-date calling and blocking information for
your app. https://developer.apple.com/documentation/sms_and_call_reporting/
getting_up-to-date_calling_and_blocking_information_for_your_app.

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology ePrint
Archive (2018). https://eprint.iacr.org/2018/046.pdf

[5] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. 2021. Flex-
ible and Efficient Verifiable Computation on Encrypted Data. In Public-Key
Cryptography – PKC 2021. Springer International Publishing, 528–558. http:
//dx.doi.org/10.1007/978-3-030-75248-4_19

[6] Emiliano Bonassi. 2024. GitHub - emilianobonassi/zkFHE: Verifiable and confiden-
tial computation based on ZKP and FHE, powered by risc0 zkVM. — github.com.
https://github.com/emilianobonassi/zkFHE [Accessed 2024-07-26].

[7] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. 2007. Chosen-Ciphertext
Security from Identity-Based Encryption. SIAM J. Comput. 36, 5 (Jan. 2007), 1301–
1328. https://doi.org/10.1137/S009753970544713X

[8] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully Homomorphic En-
cryption from Ring-LWE and Security for Key Dependent Messages. In Ad-
vances in Cryptology – CRYPTO 2011. Springer Berlin Heidelberg, 505–524.
http://dx.doi.org/10.1007/978-3-642-22792-9_29

[9] Rosario Cammarota. 2022. Intel HERACLES: Homomorphic Encryption Revolu-
tionary Accelerator with Correctness for Learning-oriented End-to-End Solutions.
In Proceedings of the 2022 on Cloud Computing Security Workshop (Los Angeles,
CA, USA) (CCSW’22). Association for Computing Machinery, New York, NY,
USA, 3. https://doi.org/10.1145/3560810.3565290

[10] Christopher Carr, Anamaria Costache, Gareth T Davies, Kristian Gjøsteen, and
Martin Strand. 2018. Zero-knowledge proof of decryption for FHE ciphertexts.
IACR Cryptol eprint Arch 2018 (2018), 26. https://eprint.iacr.org/2018/026

[11] Dario Catalano and Dario Fiore. 2013. Practical Homomorphic MACs for Arith-
metic Circuits. In Advances in Cryptology – EUROCRYPT 2013. Springer Berlin
Heidelberg, 336–352. http://dx.doi.org/10.1007/978-3-642-38348-9_21

[12] Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, Carmela Troncoso,
and Jean-Pierre Hubaux. 2024. VERITAS: Plaintext Encoders for Practical Verifi-
able Homomorphic Encryption. In Proceedings of the 2024 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2024, Salt Lake City, U.S.A,
October 14-18, 2024. ACM. https://doi.org/10.1145/3658644.3670282

[13] Sylvain Chatel, Christian Mouchet, Ali Utkan Sahin, Apostolos Pyrgelis, Carmela
Troncoso, and Jean-Pierre Hubaux. 2023. PELTA - Shielding Multiparty-FHE
against Malicious Adversaries. In ACM CCS 2023, Weizhi Meng, Christian Dams-
gaard Jensen, Cas Cremers, and Engin Kirda (Eds.). ACM Press, 711–725. https:
//doi.org/10.1145/3576915.3623139

[14] Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chatterjee, and Debdeep
Mukhopadhyay. 2022. A Practical Full Key Recovery Attack on TFHE and FHEW
by Inducing Decryption Errors. Cryptology ePrint Archive (2022). https://eprint.

iacr.org/2022/1563
[15] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 645–658.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[16] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from
fully homomorphic encryption with malicious security. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto
Canada). ACM, New York, NY, USA. https://doi.org/10.1145/3243734.3243836

[17] Massimo Chenal and Qiang Tang. 2015. On Key Recovery Attacks Against
Existing Somewhat Homomorphic Encryption Schemes. In Progress in Cryptology
- LATINCRYPT 2014. Springer International Publishing, 239–258. http://dx.doi.
org/10.1007/978-3-319-16295-9_13

[18] Jung Hee Cheon, Hyeongmin Choe, Alain Passelègue, Damien Stehlé, and Elias
Suvanto. 2024. Attacks Against the INDCPA-D Security of Exact FHE Schemes.
Cryptology ePrint Archive, Paper 2024/127. https://eprint.iacr.org/2024/127

[19] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In Advances
in Cryptology – ASIACRYPT 2017. Springer International Publishing, 409–437.
http://dx.doi.org/10.1007/978-3-319-70694-8_15

[20] Ilaria Chillotti, Nicolas Gama, and Louis Goubin. 2016. Attacking FHE-based
applications by software fault injections. Cryptology ePrint Archive (2016). https:
//eprint.iacr.org/2016/1164

[21] Microsoft SEAL Contributors. 2022. Microsoft SEAL (release 4.0). https://github.
com/Microsoft/SEAL. https://github.com/Microsoft/SEAL

[22] Anamaria Costache, Benjamin R. Curtis, Erin Hales, Sean Murphy, Tabitha
Ogilvie, and Rachel Player. 2024. On the Precision Loss in Approximate Homomor-
phic Encryption. In SAC 2023 (LNCS, Vol. 14201), Claude Carlet, KalikinkarMandal,
and Vincent Rijmen (Eds.). Springer, Cham, 325–345. https://doi.org/10.1007/978-
3-031-53368-6_16

[23] Anamaria Costache, Kim Laine, and Rachel Player. 2020. Evaluating the Effec-
tiveness of Heuristic Worst-Case Noise Analysis in FHE. In ESORICS 2020, Part II
(LNCS, Vol. 12309), Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider
(Eds.). Springer, Cham, 546–565. https://doi.org/10.1007/978-3-030-59013-0_27

[24] David Bruce Cousins, Yuriy Polyakov, Ahmad Al Badawi, Matthew French, An-
drew Schmidt, Ajey Jacob, Benedict Reynwar, Kellie Canida, Akhilesh Jaiswal,
Clynn Mathew, Homer Gamil, Negar Neda, Deepraj Soni, Michail Maniatakos,
Brandon Reagen, Naifeng Zhang, Franz Franchetti, Patrick Brinich, Jeremy
Johnson, Patrick Broderick, Mike Franusich, Bo Zhang, Zeming Cheng, and
Massoud Pedram. 2023. TREBUCHET: Fully Homomorphic Encryption Ac-
celerator for Deep Computation. (April 2023). arXiv:2304.05237 [cs.CR]
http://arxiv.org/abs/2304.05237

[25] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. 2019. Short discrete log
proofs for FHE and ring-LWE ciphertexts. In Public-Key Cryptography – PKC 2019.
Springer International Publishing, Cham, 344–373. https://doi.org/10.1007/978-
3-030-17253-4_12

[26] Keita Emura. 2021. On the Security of Keyed-Homomorphic PKE: Preventing
Key Recovery Attacks and Ciphertext Validity Attacks. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences E104.A, 1
(2021), 310–314. http://dx.doi.org/10.1587/transfun.2020EAL2039

[27] Keita Emura, Goichiro Hanaoka, Koji Nuida, Go Ohtake, Takahiro Matsuda, and
Shota Yamada. 2018. Chosen ciphertext secure keyed-homomorphic public-
key cryptosystems. Des. Codes Cryptogr. 86, 8 (Aug. 2018), 1623–1683. https:
//doi.org/10.1007/s10623-017-0417-6

[28] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Intro-
duction to Secure Multi-Party Computation. Foundations and Trends® in Privacy
and Security 2, 2-3 (2018), 70–246. https://doi.org/10.1561/3300000019

[29] Prastudy Fauzi, Martha Norberg Hovd, and Håvard Raddum. 2022. On the IND-
CCA1 Security of FHE Schemes. Cryptography 6, 1 (2022). https://doi.org/10.
3390/cryptography6010013

[30] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. 2021. Security Vulnera-
bilities of SGX and Countermeasures: A Survey. ACM Comput. Surv. 54, 6 (July
2021), 1–36. https://doi.org/10.1145/3456631

[31] Dario Fiore, Rosario Gennaro, and Valerio Pastro. 2014. Efficiently Verifiable
Computation on Encrypted Data. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security (Scottsdale, Arizona, USA)
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 844–855.
https://doi.org/10.1145/2660267.2660366

[32] Dario Fiore, Anca Nitulescu, and David Pointcheval. 2020. Boosting Verifi-
able Computation on Encrypted Data. In Public-Key Cryptography – PKC 2020.
Springer International Publishing, 124–154. http://dx.doi.org/10.1007/978-3-030-
45388-6_5

[33] Antonio Merino Gallardo and Christian Knabenhans. 2023. circomlib-FHE. https:
//github.com/zkFHE/circomlib-fhe

[34] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. 2023. Rinocchio:
SNARKs for Ring Arithmetic. Journal of Cryptology 36, 4 (Oct. 2023), 41. https:
//doi.org/10.1007/s00145-023-09481-3

 

21

http://dx.doi.org/10.2196/26371
https://swift.org/blog/announcing-swift-homomorphic-encryption/
https://swift.org/blog/announcing-swift-homomorphic-encryption/
https://developer.apple.com/documentation/sms_and_call_reporting/getting_up-to-date_calling_and_blocking_information_for_your_app
https://developer.apple.com/documentation/sms_and_call_reporting/getting_up-to-date_calling_and_blocking_information_for_your_app
https://eprint.iacr.org/2018/046.pdf
http://dx.doi.org/10.1007/978-3-030-75248-4_19
http://dx.doi.org/10.1007/978-3-030-75248-4_19
https://github.com/emilianobonassi/zkFHE
https://doi.org/10.1137/S009753970544713X
http://dx.doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1145/3560810.3565290
https://eprint.iacr.org/2018/026
http://dx.doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1145/3658644.3670282
https://doi.org/10.1145/3576915.3623139
https://doi.org/10.1145/3576915.3623139
https://eprint.iacr.org/2022/1563
https://eprint.iacr.org/2022/1563
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1145/3243734.3243836
http://dx.doi.org/10.1007/978-3-319-16295-9_13
http://dx.doi.org/10.1007/978-3-319-16295-9_13
https://eprint.iacr.org/2024/127
http://dx.doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2016/1164
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/978-3-031-53368-6_16
https://doi.org/10.1007/978-3-031-53368-6_16
https://doi.org/10.1007/978-3-030-59013-0_27
https://arxiv.org/abs/2304.05237
http://arxiv.org/abs/2304.05237
https://doi.org/10.1007/978-3-030-17253-4_12
https://doi.org/10.1007/978-3-030-17253-4_12
http://dx.doi.org/10.1587/transfun.2020EAL2039
https://doi.org/10.1007/s10623-017-0417-6
https://doi.org/10.1007/s10623-017-0417-6
https://doi.org/10.1561/3300000019
https://doi.org/10.3390/cryptography6010013
https://doi.org/10.3390/cryptography6010013
https://doi.org/10.1145/3456631
https://doi.org/10.1145/2660267.2660366
http://dx.doi.org/10.1007/978-3-030-45388-6_5
http://dx.doi.org/10.1007/978-3-030-45388-6_5
https://github.com/zkFHE/circomlib-fhe
https://github.com/zkFHE/circomlib-fhe
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/s00145-023-09481-3


WAHC ’24, October 14–18, 2024, Salt Lake City, UT, USA Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo & Anwar Hithnawi

[35] Robin Geelen, Michiel Van Beirendonck, Hilder V L Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Ver-
bauwhede, Frederik Vercauteren, and David W Archer. 2022. BASALISC: Pro-
grammable asynchronous hardware accelerator for BGV fully Homomorphic
Encryption. (May 2022). arXiv:2205.14017 [cs.CR] http://arxiv.org/abs/2205.14017

[36] Rosario Gennaro, Craig Gentry, and Bryan Parno. 2010. Non-interactive Verifiable
Computing: Outsourcing Computation to Untrusted Workers. In Advances in
Cryptology – CRYPTO 2010. Springer Berlin Heidelberg, 465–482. http://dx.doi.
org/10.1007/978-3-642-14623-7_25

[37] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. [n. d.].
Lattice-Based zk-SNARKs from Square Span Programs. Technical Report.

[38] Rosario Gennaro and Daniel Wichs. 2013. Fully Homomorphic Message Authen-
ticators. In Advances in Cryptology - ASIACRYPT 2013. Springer Berlin Heidelberg,
301–320. http://dx.doi.org/10.1007/978-3-642-42045-0_16

[39] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 48), Maria Florina Balcan and Kilian Q Weinberger (Eds.). PMLR,
New York, New York, USA, 201–210. https://proceedings.mlr.press/v48/gilad-
bachrach16.html

[40] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam, Royce Wil-
son, Asra Ali, Eric P Astor, Itai Zukerman, Sam Ruth, Christoph Dibak, Phillipp
Schoppmann, Sasha Kulankhina, Alain Forget, David Marn, Cameron Tew, Rafael
Misoczki, Bernat Guillen, Xinyu Ye, Dennis Kraft, Damien Desfontaines, Aishe Kr-
ishnamurthy, Miguel Guevara, Irippuge Milinda Perera, Yurii Sushko, and Bryant
Gipson. 2021. A general purpose transpiler for fully homomorphic encryption.
(June 2021). arXiv:2106.07893 [cs.CR] https://research.google/pubs/pub50428/

[41] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
Advances in Cryptology – EUROCRYPT 2016. Springer Berlin Heidelberg, 305–326.
http://dx.doi.org/10.1007/978-3-662-49896-5_11

[42] Seungwan Hong, Jai Hyun Park, Wonhee Cho, Hyeongmin Choe, and Jung Hee
Cheon. 2022. Secure tumor classification by shallow neural network using
homomorphic encryption. BMC genomics 23, 1 (9 April 2022), 284. https:
//doi.org/10.1186/s12864-022-08469-w

[43] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference.
In 27th USENIX Security Symposium (USENIX Security 18). 1651–1669. https:
//www.usenix.org/conference/usenixsecurity18/presentation/juvekar

[44] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making
SPDZ Great Again. In Advances in Cryptology – EUROCRYPT 2018. Springer
International Publishing, 158–189. https://doi.org/10.1007/978-3-319-78372-7_6

[45] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. 2021. Revisiting Homomor-
phic Encryption Schemes for Finite Fields. In ASIACRYPT 2021, Part III (LNCS,
Vol. 13092), Mehdi Tibouchi and Huaxiong Wang (Eds.). Springer, Cham, 608–639.
https://doi.org/10.1007/978-3-030-92078-4_21

[46] Christian Knabenhans. 2023. ringSNARK. https://github.com/zkFHE/ringSNARK
[47] Christian Knabenhans. 2024. zkOpenFHE. https://github.com/zkFHE/

zkOpenFHE
[48] Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo, and An-

war Hithnawi. 2023. vFHE: Verifiable Fully Homomorphic Encryption.
https://arxiv.org/abs/2301.07041. https://arxiv.org/abs/2301.07041 Extended
version.

[49] Junzuo Lai, Robert H Deng, Changshe Ma, Kouichi Sakurai, and Jian Weng. 2016.
CCA-Secure Keyed-Fully Homomorphic Encryption. In Public-Key Cryptography
– PKC 2016. Springer Berlin Heidelberg, 70–98. http://dx.doi.org/10.1007/978-3-
662-49384-7_4

[50] Kristin Lauter, Sreekanth Kannepalli, Kim Laine, and Radames Cruz
Moreno. 2021. Password Monitor: Safeguarding passwords in Microsoft
Edge. https://www.microsoft.com/en-us/research/blog/password-monitor-
safeguarding-passwords-in-microsoft-edge/

[51] Baiyu Li and Daniele Micciancio. 2021. On the Security of Homomorphic En-
cryption on Approximate Numbers. In Advances in Cryptology – EUROCRYPT
2021. Springer International Publishing, 648–677. http://dx.doi.org/10.1007/978-
3-030-77870-5_23

[52] Shimin Li, Xin Wang, and Rui Zhang. 2018. Privacy-Preserving Homomorphic
MACs with Efficient Verification. In Web Services – ICWS 2018. Springer Interna-
tional Publishing, 100–115. http://dx.doi.org/10.1007/978-3-319-94289-6_7

[53] Zengpeng Li, Steven D Galbraith, and Chunguang Ma. 2016. Preventing Adaptive
Key Recovery Attacks on the GSW Levelled Homomorphic Encryption Scheme.
In Provable Security. Springer International Publishing, 373–383. http://dx.doi.
org/10.1007/978-3-319-47422-9_22

[54] Benoit Libert. 2023. Vector Commitments With Proofs of Smallness: Short Range
Proofs and More. Cryptology ePrint Archive, Paper 2023/800. https://eprint.iacr.
org/2023/800

[55] Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. 2012. On
CCA-Secure Somewhat Homomorphic Encryption. In Selected Areas in Cryptog-
raphy. Springer Berlin Heidelberg, 55–72. http://dx.doi.org/10.1007/978-3-642-
28496-0_4

[56] F Luo and KWang. 2018. Verifiable decryption for fully homomorphic encryption.
Security: 21st International Conference, ISC 2018 . . . (2018). https://link.springer.
com/chapter/10.1007/978-3-319-99136-8_19

[57] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices and
Learning with Errors over Rings. In Advances in Cryptology – EUROCRYPT 2010.
Springer Berlin Heidelberg, Berlin Heidelberg, Berlin, Germany, 1–23. https:
//doi.org/10.1007/978-3-642-13190-5_1

[58] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP) (San Francisco,
CA, USA). IEEE, 1466–1482. http://dx.doi.org/10.1109/SP40000.2020.00057

[59] M Naor and M Yung. 1990. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of the twenty-second annual ACM sym-
posium on Theory of Computing (Baltimore, Maryland, USA) (STOC ’90). As-
sociation for Computing Machinery, New York, NY, USA, 427–437. https:
//doi.org/10.1145/100216.100273

[60] D. Natarajan, A. Loveless, W. Dai, and R. Dreslinski. 2023. CHEX-MIX: Combining
Homomorphic Encryption with Trusted Execution Environments for Oblivious
Inference in the Cloud. (jul 2023), 73–91. https://doi.org/10.1109/EuroSP57164.
2023.00014

[61] Ng and Chow. 2023. SoK: Cryptographic Neural-Network Computation. In 2023
IEEE Symposium on Security and Privacy (SP), Vol. 0. 497–514. http://dx.doi.org/
10.1109/SP46215.2023.00198

[62] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A Survey
of Published Attacks on Intel SGX. (June 2020). arXiv:2006.13598 [cs.CR] http:
//arxiv.org/abs/2006.13598

[63] openenclave contributors. 2022. openenclave: SDK for developing enclaves.
https://github.com/openenclave/openenclave Accessed: 2024-07-26.

[64] Oded Regev. 2009. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. J. ACM 56, 6 (Sept. 2009), 34:1–34:40. https://doi.org/10.1145/
1568318.1568324

[65] Tom Rondeau. 2020. Data protection in virtual environments (DPRIVE). https:
//www.darpa.mil/program/data-protection-in-virtual-environments

[66] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
238–252. https://doi.org/10.1145/3466752.3480070

[67] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. CraterLake: a hardware accelerator for efficient unbounded
computation on encrypted data. In Proceedings of the 49th Annual International
Symposium on Computer Architecture (New York, New York) (ISCA ’22). As-
sociation for Computing Machinery, New York, NY, USA, 173–187. https:
//doi.org/10.1145/3470496.3527393

[68] Shingo Sato, Keita Emura, and Atsushi Takayasu. 2022. Keyed-Fully Homo-
morphic Encryption Without Indistinguishability Obfuscation. In ACNS 22In-
ternational Conference on Applied Cryptography and Network Security (LNCS,
Vol. 13269), Giuseppe Ateniese and Daniele Venturi (Eds.). Springer, Cham, 3–23.
https://doi.org/10.1007/978-3-031-09234-3_1

[69] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. 2023. HECO:
Fully Homomorphic Encryption Compiler. In 32nd USENIX Security Symposium
(USENIX Security 23). USENIX Association, Anaheim, CA, 4715–4732. https:
//www.usenix.org/conference/usenixsecurity23/presentation/viand

[70] Alexander Viand, Patrick Jattke, andAnwarHithnawi. 2021. SoK: Fully Homomor-
phic Encryption Compilers. In 2021 IEEE Symposium on Security and Privacy (SP).
ieeexplore.ieee.org, 1092–1108. http://dx.doi.org/10.1109/SP40001.2021.00068

[71] Biao Wang, Xueqing Wang, and Rui Xue. 2018. CCA1 secure FHE from PIO,
revisited. Cybersecurity 1, 1 (Sept. 2018), 1–8. https://cybersecurity.springeropen.
com/articles/10.1186/s42400-018-0013-8

[72] Biao Wang, Xueqing Wang, and Rui Xue. 2018. CCA1 secure FHE from PIO,
revisited. Cybersecurity 1, 1 (25 Sept. 2018), 1–8. https://doi.org/10.1186/s42400-
018-0013-8

[73] Xiaofeng Wang, Haixu Tang, Shuang Wang, Xiaoqian Jiang, Wenhao Wang,
Diyue Bu, Lei Wang, Yicheng Jiang, and Chenghong Wang. 2018. iDASH secure
genome analysis competition 2017. BMC Med. Genomics 11, Suppl 4 (Oct. 2018),
85. http://dx.doi.org/10.1186/s12920-018-0396-0

[74] Zama. 2022. Concrete: TFHE Compiler that converts python programs into FHE
equivalent.

[75] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. 2012. Reaction Attack on
Outsourced Computing with Fully Homomorphic Encryption Schemes. In Infor-
mation Security and Cryptology - ICISC 2011. Springer Berlin Heidelberg, 419–436.
http://dx.doi.org/10.1007/978-3-642-31912-9_28

 

22

https://arxiv.org/abs/2205.14017
http://arxiv.org/abs/2205.14017
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-42045-0_16
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://arxiv.org/abs/2106.07893
https://research.google/pubs/pub50428/
http://dx.doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1186/s12864-022-08469-w
https://doi.org/10.1186/s12864-022-08469-w
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-030-92078-4_21
https://github.com/zkFHE/ringSNARK
https://github.com/zkFHE/zkOpenFHE
https://github.com/zkFHE/zkOpenFHE
https://arxiv.org/abs/2301.07041
http://dx.doi.org/10.1007/978-3-662-49384-7_4
http://dx.doi.org/10.1007/978-3-662-49384-7_4
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
http://dx.doi.org/10.1007/978-3-030-77870-5_23
http://dx.doi.org/10.1007/978-3-030-77870-5_23
http://dx.doi.org/10.1007/978-3-319-94289-6_7
http://dx.doi.org/10.1007/978-3-319-47422-9_22
http://dx.doi.org/10.1007/978-3-319-47422-9_22
https://eprint.iacr.org/2023/800
https://eprint.iacr.org/2023/800
http://dx.doi.org/10.1007/978-3-642-28496-0_4
http://dx.doi.org/10.1007/978-3-642-28496-0_4
https://link.springer.com/chapter/10.1007/978-3-319-99136-8_19
https://link.springer.com/chapter/10.1007/978-3-319-99136-8_19
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273
https://doi.org/10.1109/EuroSP57164.2023.00014
https://doi.org/10.1109/EuroSP57164.2023.00014
http://dx.doi.org/10.1109/SP46215.2023.00198
http://dx.doi.org/10.1109/SP46215.2023.00198
https://arxiv.org/abs/2006.13598
http://arxiv.org/abs/2006.13598
http://arxiv.org/abs/2006.13598
https://github.com/openenclave/openenclave
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://www.darpa.mil/program/data-protection-in-virtual-environments
https://www.darpa.mil/program/data-protection-in-virtual-environments
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1007/978-3-031-09234-3_1
https://www.usenix.org/conference/usenixsecurity23/presentation/viand
https://www.usenix.org/conference/usenixsecurity23/presentation/viand
http://dx.doi.org/10.1109/SP40001.2021.00068
https://cybersecurity.springeropen.com/articles/10.1186/s42400-018-0013-8
https://cybersecurity.springeropen.com/articles/10.1186/s42400-018-0013-8
https://doi.org/10.1186/s42400-018-0013-8
https://doi.org/10.1186/s42400-018-0013-8
http://dx.doi.org/10.1186/s12920-018-0396-0
http://dx.doi.org/10.1007/978-3-642-31912-9_28

	Abstract
	1 Introduction
	2 Background
	3 Why Integrity Matters
	4 Taxonomy of Integrity Approaches
	5 From Theory to Practice
	6 How efficient is FHE with Integrity?
	6.1 Comparing primitives
	6.2 R1CS Constraints

	7 Discussion
	Acknowledgments
	References



